

EGS Technology: hydraulic fraccing: oil and gas and shale gas best practice

Content

- rationale
-) Borehole Stress and failure
- What applications for hydraulic fracturing (general)
- How does it work (theory and operational)
- Models vs reality
- Fracture aperture and permeability
- What did we learn from gas shales

Useful books

- E. Fjaer et al
 Petroleum Related Rock Mechanics
 2nd edition
- J. Jaeger, N.G. Cook & R. Zimmermann Fundamentals of Rock Mechanics
- George E. King
- Thirty Years of Gas Shale Fracturing: What Have We Learned?
- > SPE 133456
-) Kevin Fisher
- > SPE YP presentation : Hydraulic Fracturing: Modeling vs. Reality

BRGM

innovation for life

WHY HYDRAULIC FRACTURING IN GEOTHERMA **Enhanced Geothermal Systems**

- •EU research project > 20 years
- •3 wells > 5 Km deep
- Comprehensive Fracturing programe
- •3MW_{el} Power via ORC plant

(www.soultz.net)

WHY HYDRAULIC FRACTURING IN GEOTHERMAL?

Doublet performance

$$E [MWth] = Q^* \Delta T * C_P$$

Flow-rate Q

Permeability X thickness

$$Q = \Delta p \frac{2\pi kH}{\mu \left(\ln \left(\frac{L}{r_w} \right) + S \right)}$$
Viscosity distance

∆p generated by pumps Which consume electricity

∆p is restricted by safety measures

∆p at surface does not linearly lead to Higher flow rates (friction in tubes)

Hydraulic fracturing can be considered as reducing skin

$$Q = \Delta p \frac{2\pi kH}{\mu \left(\ln \left(\frac{L}{r_w} \right) + S \right)}$$

$$r'_w = r_w e^{-s} = \frac{L_f}{2}$$

Lf = 50m
Rw = 0.15m
S =
$$-\ln(0.5*Lf/rw) = -5$$

Effect of hydraulic fraccing

Hydraulic fracturing – Types of applications

Tip-Screen-Out fracturing / Frac & Pack

- Goal: Bypass damage
- Typically in higher-permeability reservoir
- Short fracture
- Tip-Screen-Out to increase fracture width

Depth of top Dinantian Carbonates (Geluk, 2007)

Hydraulic fracturing – Applications

- > Frac & Pack
 - > Weak, permeable formations
 - Bypass skin
 - Sand control
- Massive Hydraulic Fracturing
- > (EGS, aquifers)
 - Low-permeability reservoir
 - Usually first minifrac test
 - Fracture pressure
 - Containment
 - Leakoff behavior

- Stimulating naturally fractured reservoir
 - Activate fracture network
 - E.g. unconventional shale gas
- Water injection
 - Maintain injectivity
 - Thermal fracturing
- Leakoff tests, Extended leakoff tests
 - Fracture gradient
 - Mininum in-situ stress
- Waste disposal
 - Drill cuttings
 - Produced water

Hydraulic Fracturing – Coupled Processes

Hydraulic Fracturing

- Tensile failure, NOT shear failure
- Orientation of the fracture: that direction where p_f > σ + T₀ first, i.e. σ is minimal (T₀: tensile strength)
- The normal stress on the fracture wall "tries" to close the fracture
- Therefore the orientation is
 - Perpendicular to the minimum insitu stress direction
 - Parallel to the medium and the maximum in-situ stress direction
 - Vertical
 - Sometimes horizontal for very shallow fractures

Physical process

 p_f >closure stress($\sigma_c = \sigma_h$)

Viscous fluid flow

Fluid leakoff

Elastic deformation

Fracture propagation

Proppant transport

Shut-in

Hydraulic fraccing

Elastic closure

$$P_f = \sigma_c$$

Leakoff

Hydraulic fracturing

Water Injection under Fracturing Conditions

Barnett shale

- Very low permeability
- Naturally fractured
- Goal: interconnected fracture network
- Waterfracturing
- Monitoring

Hydraulic fracturing – Basic concepts

- Stress: maximum stress vertical; minimum and medium stresses horizontal
- Modes of fracturing

> Hydraulic fracturing: Tensile (mode I) – Vertical fracture has least resistance

Mode I: Opening

Mode II: Sliding

Mode III: Tearing

Sollicited Induced seismicity

> EGS operations relies on generating permeability through shear fractures.

Through massive fluid injection typically 50l/s over various days

BRGM GFZ

Hydraulic Fracturing – growth and confinement

Hydraulic Fracturing

- Lithography induces contrasts in minimum in-situ stress
- Lithgraphic density: 2200 kg / m³
- Fluid density: 1000 kg / m³

Hydraulic Fracturing – Effect of layering, confinement

Layering

- Elasticity
- Stress
- Permeability
- Porosity

Hydraulic fracturing operations (pinnacle)

How BIG are hydraulic frac jobs

- > Fracture treatment volumes can be over 10,000 m3
- > Pump rates can be 100 l/s or more
- Proppant placed up to 1 mln kg
- Fracture length ranges from 3 to 1500 m
- > Treatments cost ranges from \$5,000 to \$5,000,000 USD

Experiments (Fisher, 2010)

GEGELEC Supported by
INTELLIGENT
EUROPE

Experiments (Fisher, 2010)

- Horizontal well
- Planar fracture surface (vertical)

Stress CONTROLS fracture propagation over modulus

Stratigraphic layering (and overpressure) cause fractures to be abruptly

blunted

BRGM GFZ
Innovation for life

Confinement mechanism related to high poison ratio (low critical stress + maybe very weak → decoupling

Fracture Complexity Due To Joints

NEVADA TEST SITE HYDRAULIC FRACTURE MINEBACK

Multiple fracs:

- Store excess volume
- Reduced length
- Additional leakoff
- Additional fracture faces
- May change significantly with time
- Higher pressure drop
- Additional fracture faces
- Tip generated effects
- additional stress with shear dilatency
- different prop settling/transport

Modelling versus measuring

Fracture
growth models
incomplete physical
understanding

Mapping diagnostics not predictive

Calibrated models more realistically predict how fractures will grow for alternative designs

An example of a model: Effect of Stress Gradient and Stress Contrast

Width and length contours ($\Delta \sigma = 2$ MPa)

What can we measure/ESTIMATE

- Lithology (logs)
 - Gamma Ray (GR)
 - dynamic modulus (E) and
 - poision ratio (v)
- Micro-seismicity (shear failure only)
- Stress (special measurements MRX)
- Pressure
- Tilt meters

Preferably do a mini-frac test

More input for design:

- In-situ stresses
- Fracturing pressures
- Leakoff behaviour
- > ISIP = initial shut —in
- Pressure
- Shut-in time

Minifrac test

Use pressure to constrain fracs

Displacement field in the earth around a vertically oriented hydraulic fracture, showing induced surface and downhole tilt vector directions. Siebrits, 2000

Sometimes model predictions and measurements agree well

But in other cases not

Along Fracture Length (ft)

MICROSEISMICITY

- · Microseisms: Small Amplitude, High Frequency
- Receiver Distance = Typical Interwell Spacing Requires: High Quality Receivers

MICROSEISMICITY

Determining Distance and Elevation

- Slippage Emits Both P & S Waves (Compressional & Shear)
- Velocities Are Different

P Wave > S Wave

Detected At Tri-Axial Receiver

Microseismic monitoring

- Numerous cases where fracture grows at or close to microseismic observation well
- Height can be accurately assessed
- Usually observe fractures following lithology

Fracture containment AS a consequence of strength of surrounding layers

- Variable containment in shales
- Containment (e.g., Barnett)
- Bounded by carbonates
- Upward growth
- Continuous shale
- Faulting effects

BRGM

Microseismic data and model calibration-cotton valley sst

Supported by

Offset due to natural fractures and faults

Hydraulic Fracturing in Shale Gas - Observations

- No two shales alike. They vary aerially, vertically & along wellbore.
-) Shale "fabric" differences, in-situ stresses and geologic variances often require stimulation changes.
- First need Identify critical data set
- Second need never stop learning about the shale.

Natural pathways.

Open at 50 to 60% of rock frac pressure.

Open by low viscosity fluid invasion.

Difficult to prop.

Dominate Permeability

Natural fracture systems

Coupling between geomechanics (friction; fault reactivation) and flow behaviour (dual porosity system)

Shear Dilation Mechanism

Chipperfield, et.al., 2007

Reservoir Model Description; after Warren and Root (1963)
Taken from Chipperfield, 2007

Effect of elastic / plastic behaviour

- Brittle shales are more easily fractured
- Soft material: Healing of fractures

Dynamic to Static Young's Modulus Correlation

Dynamic E=sonic
Static E=mechanical
experiment

Re-Fracturing

They Work – But Why?

- Old fractures with gel
 - Slick water fracturing connects to larger part of reservoir
- Change of stress orientation

Comparison of XL Gel frac and Water-Frac Re-frac, horizontal Barnett well Source: Cipolla, et. al., SPE 124843 modified from Warpinski, et. al., SPE 95568.

Fracture Network Complexity

- Complexity develops if natural fracture system is connected to induced fracture and opened
- Observed with microseismic monitoring

Proppant placement

- Proppant settles due to low water viscosity
- Unpropped fracture part still contributes to flow through propped part
- Distinction between brittle material (fractures stay) and ductile material (fractures heal)

Water Management

- Cleanup water produced back early
- Use produced water for later fracture treatments
- Economic and Ecologic advantages

Interference concerns with groundwater? Not so likely due to excellent vertical confinement

