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How to find a geothermal
reservoir

temperature focus — some stress

(modelling and geophysical techniques)
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GEOPHYSICAL EXPLORATION

Geophysics provides an undirect evidence
(an “image”) of certain features of the
underground, like bio-medical images
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Stope

This is obtained by measuring the response of the medium under
investigation to the passage of a certain “energy field”:

natural — passive tests or artificially induced — active tests



GEOPHYSICAL EXPLORATION

It is not wise to define a particular sequence of geophysical surveys as being
applicable to all potential reservoirs:

Degree to which the measured property is related
to the property of interest.
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GE = INTELLIGENT ENERGY BRGM (&)
’ EUROPE “ . . :
innovation
I B ‘ mforlife P

Density Magnetic Flecirical Dielectric Seismic
Susceptibility | Resitivity Permittivity Velocity

Porosity (pore fracture)
Permeahility

Water content

0il content

Water guality

Clay content
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GEOPHYSICAL EXPLORATION

A geothermal system generally causes inhomogeneities in the physical
properties of the subsurface, which can be observed to varying degrees as
anomalies measurable from the surface.

Changing physical parameters:

temperature (heat flow survey)

electrical conductivity (electrical and electromagnetic survey)

elastic properties influencing the propagation velocity of elastic
waves (seismic survey)

density (gravity survey)

magnetic susceptibility (magnetic survey).
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Content

Geothermal gradients — introduced by Pierre
Plate tectonics — covered by Pierre
Convective controls: A closer look at Mantle dynamics
Conductive controls: Lithosphere composition and differentiation
Regional and local temperature assessment
Conductive (predictable -
Use temperature data and models
vs advective (magmatic, partially predictable)
Global (heat flow —tectonic analysis)
Local (geophsyical exploration techniques probing deeper
temperature)
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Temperature gradients in the upper crust

Regional temperature variations

Natural flow
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Soultz - Fluid circulation appears to play an important role in e .
enhancing shallow heat flows at the expense of diminishing S RS AN s

heat flow at deeper levels
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Temperature is reconstructed using a steady
state geotherm (conductive approach)

> Heat flow q [MW/m-2] is an important boundary condition in basin modeling. It

determines the temperature gradient in sediments in conjunction with rock
conductivity k [W m-1 C-1]

Temperature (T) =2
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Content

» Convective controls: A closer look at Mantle dynamics
» Lithosphere vs astenosphere
» Cooling plate
> Not so simple
» Phase transitions
» Smaller scale phenomena
» Conductive controls: Lithosphere composition and differentiation
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Geotherm and geothermal gradient Crust Lithosphere
¥ Y

Geotherm = temperature as a function of depth Upper |
Mantle
1000 Astheno-
Geothermic gradient = rate of sphere
change in temperature with 2000 Me(sLosphere
. . ower
increasing depth = Mantle)
% 3000 D" layer ~
- gradient varies depending on =3
; (]
location _ _ 4000 Outer core
- surface gradient is average 20-
30 oC/km o
- Surface gradient is much higher
than in mantle and core Inner core
6000

0 2000 4000 6000 8000
Temperature (°C)

Copyright © 2005 Pearson Prentice Hall, Inc.
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Heat flow at Earth’s surface

Continental lithosphere: heat flow is heterogeneous as a consequence of thickness variations, composition and thermal

age
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Lithosphere thickness

13
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Seismic tomography

Seismic wave velocity is a function of temperature:

Tonga trench

Wanualu french -
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) Cold - faster
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Conclusions

» Strong differentiation in heat flow at base of the lithosphere due to
convection/advection

» Can explain heat flow variations to some degree

» Kinematic response at surface convective forcing more
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Content

» Geothermal gradients, power-EGS and the conductive earth

» Plate tectonics

» Convective controls: A closer look at Mantle dynamics

» Conductive controls: Lithosphere composition and
differentiation
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Crustal thickness
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Radiogenic heat generation A [uW m?3] is a function
of relative abundance of radiogenic minerals in
rock. It influences the steady state geotherm

ALy gl k= Az k

dZ Temperature (T) =

& (z) pdog
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Crustal heat production and geothermal gradients
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FAULT SYSTEMS gt (Gigben
S Y Ny

Assemblage of planar faults <\ /; :\ /7 :\ /7

Assemblage of listric faults

In tra man tlereflections

250 200 150 100 50 0

Neogene
E Palgogene I Middle - Upper Triassic

[ cretaceous [_] ?Devonian - Lower Triassic
[ Jurassic [] Basement

distance (km)

Moho

Note: these faults accommodate a pure shear
deformation (also called non rotational
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Tectonic Numerical kinematic models predict
temperature effects of lithosphere deformation.
The 1D McKenzie Model (1978) is a classic for
continental lithosphere extension (rifting) Temperature (T) =

& (2) pdag

120 km

McKenzie model: lithosphere is instantaneously 1330 C

thinned by factor (3
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For the McKenzie model a very simple
analytical solution for the heat flow exist

McKenzie heat flow
No Good:

( at flow McKenzie Model (for various 3 -values

*No crustal heat production
*No sediment infill

Heat Flow [mMW m-2

12U Km
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. Some More on Modelling: heat flow should include
sediments->heat flow is lower because of cooling effect of

sediment infill.
dT/dz dT/dz

\
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Effects of crustal heat production

» Classis models such as Mckenzie, neglect effects of crustal
heat production. Crustal heat production accounts to ca
50% of the surface heat flow, however it diminishes as a
result of crustal thinning during extension and is not fully
compensated by heat production of sediment replacing
crust. The net effect is a reduction of heat flow after
extension

Basement Heat Flow ( Heat production)
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—&— FD no sediments
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—e&— steady state sed
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Hot mantle plume
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Interpolation using all datapoints

Surface heat flow on the continents

-120 -100 -80 -60 40 -20 O 20 40 60 80 100 120 140

10 20 30 40 50 60 70 80 90 100 mW/m?2

Artimieva et al,2001 and 2006
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Adding volcanoe

» Treat each historic
active as 150mW
(Nagao and
Uyeda,1995)

» Treat holocene as
80mW
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Heat flow — more detail Adding Volcanoes e Vet i
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A closer look at europe — active volcanoes —
holocene and younger
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Magmatism

) Plate tectonics related
» Mid oceanic ridge (e.g. iceland) and rift (east africa)
» Subducting plate (e.g. indonesia)

» Mantle plume (core-mantle boundary, e.g. geysers, hawaii, canary
islands)

» Orogenic collapse
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Well & Seismic Data

Wells: 5876 (onshore/offshore)

Seismic: 72.000 km (2D+3D lines)

Temperatuur (°C)

0 100 200
0 - h
— 'Normal Gradient'
¢ BHT
1000 . DST
2000
E
[]
+ 3000 *
) ‘o
o
4000
* *
5000 \
6000

Over 1000 BHT and DST data




NN ZANARNA

| Deeper/lateral
Requires better
models

nd nd nd nd nd nd nd nd nd nd nd.+d ng ind"Rd nd nd nd nd nd nd T nd nd nd nd nd

| nd nd nd nd nd nd nd nd nd nd y 5 d nd nd nd nd nd nd nd nd nd n
' nd nd nd nd nd nd nd nd-n ¥ A d "8'40340 nd nd nd nd n nd nd
\ o NCRIERE vorra-ad ndomd nd r 2 oA
nd nd nd nd nd nd nd nd nd -’&,0. : 2d nd nd nd nd nd nd nd nd nd _-,—‘
5, 27
nd nd nd nd nd nd nd _|,-.,v::¢ e‘ g’, d nd nd nd nd nd nd nd l,;&::ﬁg
7 .

nd nd nd nd nd SRRy Rz ad nd nd nd pasBRERe
) R h s e
= AN Al AN e St e A e T L b e O ATH A SATe AT A AN A
sty LR R
AN 13 O AT AT ATy AT AT ATl
SRR B8 s asa

e e eaeeny 100 (0 2 e
Eakmemns e 10000 RO R
SR

x
.
a0l
Lona
<

it

25
5

L s

Lokhorst and Wong, 2007
Temperature 2 km L O E—

Temperature (C)
= a0 75 -80 no data available
B5 =90 =75

average ca 30C/km



Supported by

INTELLI L T o T =
# EUROP |
- A
Knowledge of subsurface
Ongoing mapping (public)
Upper North Sea Group
Lower and Middle North Sea Groups -]
Chalk Group
Rijnland Group
Schieland and Niedersachsen Groups g
Altena Group ~..\ ‘
Lower and Upper Germanic Trias Groups 7 QAU
Zechstein Group %q\ﬁi\m\
Lower and Upper Rotliegend Groups \‘\“&,’fz;}h -
. bl P s B foa9 vl stum)
Limburg Group ; ‘\\\‘ preipion
Carboniferous Limestone Group = \ —
Devonian |
Silurian 7 ==
Ordovician — it
e
D D™
Brabant | West Netherlands Basin \ Zandvoort [ Central Netherlands Basin v Texal- | Friesland Platform ' Lower Saxony Basin
Massif | | Ridge \ Wssel- | :
Zealand i Voorna ! Mid-Netheriands f Gouwzes Raaita Snund.}rgla meer Dalen Graban Halsioot
Platform + Trough ! Fault Zone O:U' I'I'raugn_ MN-N' Fault  High [ |'-,1;|\,-'| ! : ELZL Fault Zane
0 ; I " " ; : o A

h P-P
|
’ w 1—..--——-_.._
1 |

_’-

|

Depth (km}

Map 5: Depth of the base of the Zechstein Group




' = Supported by i
| 4 el g BRGM (i
GEG-ELECS wieg e
' e innovation
I B : ‘ mforlife P I

BHT data (n=1241) BHT wells and

E&P licenses

) ICS (n=412)
» Initial Cylindrical source r:-.}._._,“ bl _

> Used to correct simpler AAPG . AR N 2%
t..-.: 99:‘-" .‘=‘ L%
methods oo et = e .-',:.x

L U —~ . * 5

o.Ot . .® ...- ..“.‘.
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For comparison
DST much less (n=52)
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Surface Temperature
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Results - temperature (3)
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Temperature fit to well data
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Temperature fit to well data |
Meteoric water

e @ w0 W e 2% convection

Luijendijk, 2010
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Temperature fit to well data
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After Ellis et al., 1999
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Soultz, core of fault zone
4 km depth (HAFZ)

Active faults allow hydro-thermal conduit zones
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heat flow at deeper levels
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Cenozoic (Basins) I |
Strike-slip Fault Vilariga

deVicente et al. 2011 (Tectonophysics)
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Geophysical and geochemical methods to find
high temperatures (advective dominated)

How to find high temperatures (not just from surface heat flow)
Magmatic areas and tectonics (geochemistry-covered by Pierre)
Volcanoes,Surface phenomena (fumeroles — covered by Pierre)
Geothermometers (covered by Pierre

Micro-seismicity (IDDP)
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EM, TEM, MT

) TEM
» T->Telluric (natural electricity)
» E->Electric (human electricity)
> M->Magnetic (natural or induced)
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Several minerals containing iron and nickel display the property of
ferromagnetism. Rocks or soils containing these minerals can have strong
magnetization and as a result can produce significant local magnetic fields.
Rock magnetism is acquired when the rock forms, and it reflects the
orientation of the magnetic field at the time of formation. But rock magnetism
can also change with time, if the rock is subjected to temperatures above a
certain point, called the Curie temperature, above which it loses its
magnetic properties, and it is remagnetised once it cools down again, now
induced by the magnetic field present at that time.

Magnetic surveying...

Investigation on the basis of anomalies 1n the Earth’s
magnetic field resulting from the magnetic properties of
the underlying rocks (magnetic susceptibility and
remanence)

INTELLIGENT ENERGY BRGM -.,‘:
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Measurements are performed using
magnetometers either at the surface or
airborne, if the objective is regional
mapping.
Silicate minerals, rock salt (halite) and
limestones (calcite) have a very low magnetic
susceptibility and are therefore not useful for
magnetic measurements.

Consequently, sedimentary rocks usually have
much lower magnetic susceptibilities than
igneous or metamorphic rocks. Thus the
magnetic method has traditionally been used for
identifying and locating masses of igneous rocks
that have relatively high concentrations of
magnetite, which is the most common of the
magnetic minerals.

Strongly magnetic rocks include basalt and
gabbro, while rocks such as granite, granodiorite

and rhyolite have only moderately high magnetMAG NETIC SURVEYS

susceptibilities.
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An object in this case, an iron ore
deposit, has been magnetized with
a magnetization M in the direction
of the earth's field H. The
magnetized body has its own
magnetic field Hse¢, which for this
body has the roughly dipolar form
shown by the dashed lines in the
figure. These secondary fields add
vectorally to the inducing (Earth's)
field. Accurate measurements of
the magnetic field along a profile
over the body will reveal a
characteristic pattern or anomaly
caused by the body.
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“MAGNETIC SURVEYS A

The shape and magnitude of a magnetic
anomaly depends primarily on two factors:

*The shape and orientation/position of the
magnetic body and

*The latitude of the location.

This factor is important because of the
dipolarity of Earth’ s magnetic field. The
inducing magnetic field has a dip angle that
varies from place to place over the surface
of the earth: At the magnetic North pole, it is
vertical, and the pattern of magnetic
anomalies is symmetrical, while the patterns
of anomalies that are recorded become
more complex away from the pole.
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Diurnal variations

« Variations of external origin. Results from the magnetic
field induced by the flow of charged particles within the
1onized 1onosphere towards the poles

« Movements in 1onosphere:
Difference in temperature in atmosphere
Sun-Moon attraction

« Varies with latitude and seasons (max. in summer, max in
polar regions)

« Smooth variations. Amplitude 20-80 nT

o
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MAGNETIC SURVEYS

Champ magnétique terrestre total (nT)
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DR AT * Loop to a reference basis
L ' - (tedious...)
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MAGNETIC SURVEYS
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Magnetic storms

« Associated with intense solar activity, results from the arrival
in 1onosphere of charged solar particles

« Less regular than diurnal variations. Amplitude up to 1000 nT!

« No magnetic surveys during storms (1impossibility of
correcting the data)
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Two types of
magnetometers are
frequently used in
magnetic surveying:
* Proton magnetometer
« Optically pumped
magnetometer

* Other device: fluxgate
magnetometer




GEC &L hfcmeiio sumeys @

I B for life e —

Curie temperature is in the range of a few hundred to 570°C for titano-magnetite,
the most common magnetic mineral in igneous rocks

Magnetisation at the top of the magnetic part of the crust

relatively short spatial wavelengths

Magnetic field from the demagnetisation at the Curie point in depth
U

longer wavelength and lower amplitude magnetic anomalies

This difference in frequency characteristics between the magnetic effects from
the top and bottom of the magnetised layer in the crust can be used to separate
magnetic effects at the two depths and to determine the Curie point depth.



Why Resistivity? — Porosity
Per la maggior parte delle

empirica, stabilita da Archie (1942), tra |l
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rocce e valida una relazione
rapporto della

resistivita della matrice di roccia p, e la resistivita del fluido
nei pori p; detto fattore di formazione F, e la porosita, .
Questa relazione, nota come legge di Archie, é:
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GNe

Resistivita di rocce saturate con soluzioni di 1000 ppm di NaCl utilizzando la legge di Archie.

Tratto da Ussher et al.,, WGC2000.
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Why Resistivity? — Fluid flow

Electric Ouirent 7 Phid Flow

Fig. 5. Electric current and volume flow rate fields for lhr.- same fracture as Figure 4. The surface separation is d,,
= | The magmtudl: and direction of the local electric current and volume flow rate are represented by small vectors.
For comparison, the longest volome flow rate and electric current vectors were scaled to have the same length. antact
areas are shown as blank patches. ;

Lab measurements have shown that hydraulic and electric flow follow
the same paths, but currents are more diffusive



GEO’* 2 INTELLIGENT ENERGY BRGM  (fg
J EUROPE B . .
innovation

ELECTRICAL (DC) METHODS

The best tested of the techniques is the Schlumberger sounding method. With
the Schlumberger array, electrodes are placed along a common line and
separated by a distance, which is used to control the depth of penetration.

The outer two electrodes drive current into the ground, while the inner two,
located at the midpoint between the outer two, are used to detect the electric
field caused by that current.

The outer two electrodes are separated by progressively greater distances as a
sounding survey is carried out, so that information from progressively greater
depths is obtained.
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Electromagnetic (EM) sounding methods used in geothermal exploration:

natural-source induction methods
(magnetotellurics, audiomagnetotellurics and self-potential)

controlled-source induction methods
(Tdm, VIf)

direct current methods
(SeV, electric tomography)

Their objective is the mapping of electrical structures at depths that are
meaningful in terms of geothermal exploration.

These depths must be several kilometres at least when looking for the
anomaly in conductivity associated with reservoir rocks, and several tens of
kilometres when seeking the thermally excited conductive zone associated

with the source of a geothermal system.
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Campo magnetico
primario
The total EM field
measured at the surface
(receiver Rx) is the sum

of the primary and the X < I DORX
secondary field.

superficie

) Campo magnetico
E = electric P g

oy secondario
H = magnetic b

Correnti Mo Anomalia

_elettriche conduttiva
indotte

Any EM inductive method follows this
scheme.

Depending on the method, the fields can
be measured as a function of time or of
frequency

ELECTRICAL AND EM METHODS
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Magnetotellurics (MT for short) is a technique which utilizes the earth's
naturally occurring electromagnetic field to image the subsurface's electrical
resistivity structure.

Natural electromagnetic waves are generated in the earth's atmosphere by a
range of physical mechanism:

High frequency signals originate in lightining activity

Intermediate frequency signals come from ionospheric resonances

Low frequency signals are generated by sun-spots

Even if the two types of sources create incident EM fields with different
features, the almost plane-wave propagates on the vertical inside the ground,
due to the large difference of resistivity between atmosphere and earth.


http://www.geophys.washington.edu/SolidEarth/Magnetotellurics/MT_method/lightning.gif
http://images.google.it/imgres?imgurl=http://www.amtsgym-sdbg.dk/as/rw/X-sep25.gif&imgrefurl=http://www.amtsgym-sdbg.dk/as/rw/storm.htm&h=512&w=512&sz=163&tbnid=eWdr6gW10FYJ:&tbnh=128&tbnw=128&start=16&prev=/images?q=sun+spot&hl=it&lr=
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MAGNETOTELLURlC METHOD
As these waves travel into the Earth's = & o

100

Log frequency (H

interior they decay at a rate dependent
upon their wavelengths. T

0 20 40 60 80 100 120 140 160 180 200
Skin depth (m)

These electromagnetic waves penetrate the earth and
return to the surface bearing information on its electrical

resistivity structure. \meident wave

By some tortuous mathematics it is possible to — > >
demonstrate that the ratio between electric (E) and 2
magnetic (H) fields at the earth's surface is independent |

from the source electromagnetic field, but depends only on
the electrical resistivity structure of the subsurface.

|
y

By measuring E and H at the surface we can generate
electrical resistivity models of the earth. Electrical resistivity
can then be interpreted, guided by other fields
observations, such geological and other geophysical
constraints.
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MAGNETOTELLURIC
METHOD

We therefore measure the variation

of E and H in time over the
sounding spot:

Time-series FFT
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Transfer function Z impedance tensor

|

E, <w>j

E, (o) Z(@) Z;(o)

I,j, two perpendicular directions

Z,(0) Zy(a)) H, ()
H, (@)

J




MT data are acquired in the

field, as measurements of

electric and magnetic fields
with time

E®), Ey(t), Hy(t) , H,(0), H(Y)

Timing is obtained from GPS
time signals.

Care must be put on the choice
of the site, trying to avoid
possible noise sources, such
as power lines, electrified
railways, pipelines.
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LOOP

BRGM (@)

MAGNETOTELLURIC METHOD
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s these waves travel into the Earth's interior they ecamafe
dependent upon their wavelengths.
This is the main advantage of MT: large depths can be reached by using a
low frequency, without the need of an artificial source

Depth of penetration o sqrt ( period x resistivity)

2
Resistivity of ground « (E)
H
E
o
surface
100 ohm - metres
20 km
Period = 100 s Period = 4 s Period = 1/ 25 s

skin depth = 50 km skin depth = 10 km skin depth = 1 km
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It is important to consider which part of the Earth 1s being sampled in such a
measurement. Since the EM fields attenuate in the Earth with a length scale of a skin
depth (9), this measurement samples a hemisphere around the observation site,
radius 0.

Data derive not only from the geometrical-physical features on the vertical of the
recording site, but depends also on the later features: this lateral dimension increases
with depth (decreases with frequency)

A

MAGNETOTELLURIC METHOD
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Magnetotelluric data, after
processing and modelling,
provide the resistivity
distribution at depth of
various km.

Example: 2D inversion
models in Larderello, Italy
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ACTIVE EM METHODS - TEM

Active electromagnetic (EM) methods are used
mainly for shallow depth resistivity studies and to
help with static shift corrections of MT data. Most
commonly central loop TEM is used, which is
based upon inducing currents in the ground
electro-magnetically via a loop laid on the surface.
The loop has a square shape, each side measuring
several hundred meters. A magnetic spool is
placed at the centre of the square, after which DC
current is applied to the loop. The current is
abruptly switched off and the decaying magnetism
induces eddy currents in the formation that try to 3
counteract the magnetic decay. The spool at the s e
loop’s centre measures the magnetic decay at the

surface with time elapsed since the current was

switched off. This permits calculation of the

formation resistivity below the loop.
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Curva di Resistivita vs Profondita
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As for MT, TEM provide resistivity
distribution at depth.

Byi nterpolation of 1D models along
profiles, it is possible to obtain 2D and 3D
resistivity distribution at depth.

ACTIVE EM METHODS - TEM
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ACTIVE EM METHODS - TEM

Advantages

over DC methods:

* less expensive

* interpretation is less time consuming

« more downward focused

 excellent resolution

* requires significantly less area than other electric methods

« MT Static shift correction

« in DC sounding, the monitored signal is low when subsurface resistivity is low, as
in geothermal areas, whereas in TEM soundings the situation is the reverse, the
lower the resistivity the stronger the signal

Over MT method:

« cheaper and has a much higher resolution at lower depths.

Disadvantage:
Limited depth of penetration (similar to most electrical methods)
1D models
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History of methods in Iceland

» 70s
» Dipole-dipole resistivity (Schlumberger DC)
» 1D inversion, penetration up few hundred m depth
» 80s and beyond (first done in Iceland)
» TEM method: Central-loop transient electromagnetic
» Much deeper 1D inversion, more cost effective
» 300x300 m loops at surface
> Also MT method
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B. Oskooi et al. / Physics of the Earth and Planetary Interiors 150 (2005) 183-195 ICela nd-n O n-SaI Ine

WNW ESE > Resisitivity

3

@

£
N1

» top high resistivity (>25)

MG-10

) lowering resitivity zone)(<<25)

> High resisitivity core (>25)
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> MT - deeper to 10 k, lower resolution
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At larger depths
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CLAY > Resisitivity

* . » top high resistivity

- . » Clay minerals - low resitivity
> Smectite-zeolite

) illite-smectite

» High resisitivity core

> EM (human source) up to 1 km depth

> MT (natural source+human) — deeper

----- RESERVOIR - - -
... .. APROPYLITIC) =~ "

to 10 km, lower resolution

.................

ppppppppppppppppp

Oskooij et al., 2005
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EB. Oskooi et al. / Physics af the Earth and Planetary Interiors 150 (2005) 183-195 ICela nd-non-sal Ine

WNW ESE > Explanation resisitivity - Clay

minerals

MG-10

> Low resisitivity
> Smectite-illite-zeolite
> High resistivity

> Chlorite-epidote
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Arnason et al., 2010



7115

g

7110

Ealil

Iceland - Hengill

71040 1

ma’&ﬁﬁé@@;%%

Morthing

MT - inversion

7095 4

090

(Arnason, 2010)

7085 T T T

470 475 480 485

Fig. 3. Density of seismic epicentres (number within 250 m = 250 m bins) from 1991

to 2001 and inferred transform tectonic lineaments ( green lines). The lineaments are

based on the overall distribution of the seismicity as well as more focused analyses of
individual episodes [ earthquake swarms). Blue lines: faults and fissures mapped on
the surface; red dots: geothermal surface manifestations {S2mundsson, 1995], Thin
black lines: topographic contour lines in m a.s.l. Distances are given in km, Modified
from Amason and Magnisson (2001). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of the article.)

495
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Combination with other techniques

Seismic structure and velocities
Assumption: correlations (e.g. salt high velocity, low resistivity),
starting point model boundaries
Pitfalls: assumptions (high sensitivity to salt content in pores)
Gravity
Assumptions: Correlations (crustal density, resistive core), flexural
isostacy
Pitfalls: non-uniqueness
Microseismicity at above magma chambers
Assumptions: occur rheological boundary viscous-brittle)
Satelite information
Vertical movements, temperature
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Fig. 3. Density of seismic epicentres (number within 250 m = 250 m bins) from 1991

to 2001 and inferred transform tectonic lineaments ( green lines). The lineaments are

based on the overall distribution of the seismicity as well as more focused analyses of
individual episodes [ earthquake swarms). Blue lines: faults and fissures mapped on
the surface; red dots: geothermal surface manifestations {S2mundsson, 1995], Thin
black lines: topographic contour lines in m a.s.l. Distances are given in km, Modified
from Amason and Magnisson (2001). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of the article.)
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Enhancing reservoir performance - Stress is critical

Regime

normal faulting
strike-slip
thrust faulting

unknown

|

Quality

Cloetingh et al., 2010
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thrust faults

normal faults
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excellent indicators of

FAULT SYSTEMS stress directions
The simplest association of faults is formed by conjugate faults

These faults formed during the same deformation event

They

* have an angle of ~60° between each other

e the angle is dissected by the maximum compressional stress

Conjugate faults are
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Mohr Coulomb

) Slip along a fault occurs if

o /o, > tan ¢
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» Slip along a fault plane occurs if

c.Jo. 2 tan .
s'On ¢ failure envelope

Orientation of fault
Plane (next slide)

Mohr circle (touching failure envelope)
O3 (efy = MiNimum principal effective stress = c; -Ps
1 (efy = Maximum principal effective stress = o, —P;

P: = fluid pressure is typically p,, g z (assuming connected pore space) which is
ca one third of total vertical stress o, = (p g z)
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» Slip along a fault plane occurs if

o /o, 2 tan ¢

Orientation of fault
Plane 0

20 =n/2+0

fault

Normal™-..
To fault

Normal to fault is
* in the plane of 5, and o4
* Oriented at 0 relative to o ,
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excellent indicators of

FAULT SYSTEMS stress directions
The simplest association of faults is formed by conjugate faults

These faults formed during the same deformation event

They

* have an angle of ~60° between each other

e the angle is dissected by the maximum compressional stress

Conjugate faults are




Measurements of stress

Stress estimation
Well data (tommorow)
Break-out data
LOP
Minifrac tests
Earth quakes
moment tensor
Maximum depth as indicator for Brittle-ductile transition
Fault and fracture analysis
Slip tendency (stress which fits with fractures/faults)

innovation
for life



C, nartad hy
Supportea py BRGM

INTELLIGENT ENERGY

', EUROPE [
innovation
‘ mforlife e

P-wave first arrivals polarity (up-P, down-T) -
beach balls
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strendgth (G — o)

strengih (6, — 6]

brittle ductile
5 5 Rheology of the
lithosphere 2>
maximum depth of
earthquakes
L. —~ -
strength (6, - 05) Combining brittle and
ductile laws results in a
Brittle- rheqlogical sjtrength
c ducti profile, showing the
= e uctile
3 o change of rock strength as
transition _
a function of depth.
Strength

profile
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Data from Krafla where a magma was recently met during drilling

Prior to drilling of the IDDP well:

The resistivity surveys shows a
conductive body mostly staring at
4-5 km depth but with spikes up to
2km depth.

The micro-earthquake-studies
shows that all micro-earthquakes
occur above the conductive body
indicating more than 700°C

The IDDP well drilled in 2009:

Drilled close to one of the spikes
but was not intended to enter it.

Acidic magma was found at 2,1
km depth preventing further drilling ~ Combined results of resistivity soundings

and underlining the needs for more  (TEM/MT ) and micro-seismicity analysis
accurate exploration methods - g

-

isOR www.isor.is ICELAND GEOSURVEY



Supported by =
LE( = INTELLIGENT ENERGY BRGM (2
, EUROPE - minnovation ‘

for life e —

Slip tendency - criticallity of stress & fluid flow potential

Shear direction (hangingwall} B
maE . @1 C
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Left lateral

oLy

G,/0,=0.33
o /c,~0.9

Slip tendency (ST)
0.250.3 0.45 0.58
B

Slip Tendency (Worum et al., 2004)



