

EGS Technology: hydraulic fraccing: oil and gas and shale gas best practive

GFZ

Content

- rationale
- > Borehole Stress and failure
- > What applications for hydraulic fracturing (general)
- > How does it work (theory and operational)
- Models vs reality
- Fracture aperture and permeability
- > What did we learn from gas shales

Useful books

- E. Fjaer et al Petroleum Related Rock Mechanics
 2nd edition
- J. Jaeger, N.G. Cook & R. Zimmermann
 Fundamentals of Rock Mechanics
- George E. King
- > Thirty Years of Gas Shale Fracturing: What Have We Learned?

BRGM

innovation

- > SPE 133456
- Kevin Fisher
- > SPE YP presentation : Hydraulic Fracturing: Modeling vs. Reality

(www.soultz.net)

 $Q = \Delta p \frac{2\pi kH}{\mu \left(\ln \left(\frac{L}{r_w} \right) + S \right)}$ Viscosity distance

∆p generated by pumps Which consume electricity

 Δp is restricted by safety measures

 Δp at surface does not linearly lead to Higher flow rates (friction in tubes)

Hydraulic fracturing can be considered as reducing skin

 $r'_{w} = r_{w}e^{-s} = \frac{-1}{2}$ Lf = 50m

Rw = 0.15mS = - ln(0.5*Lf/rw) = -5

L=1500m → Improvement Q factor 2

Effect of hydraulic fraccing

Stresses around a borehole

Effect of Fluid Pressure – Net Stress

Supported by

R

0 P

BRGM

innovation for life

EURO

Hydraulic fracturing – Applications

- Frac & Pack
 - > Weak, permeable formations
 - > Bypass skin
 - > Sand control
- Massive Hydraulic Fracturing
- (EGS, aquifers)
 - Low-permeability reservoir
 - > Usually first minifrac test
 - > Fracture pressure
 - Containment
 - Leakoff behavior

Stimulating naturally fractured reservoir

BRGM

innovation

- Activate fracture network
- > E.g. unconventional shale gas
- Water injection
 - Maintain injectivity
 - > Thermal fracturing
- Leakoff tests, Extended leakoff tests
 - > Fracture gradient
 - Mininum in-situ stress
- > Waste disposal
 - > Drill cuttings
 - > Produced water

Hydraulic fracturing – Types of applications

Tip-Screen-Out fracturing / Frac & Pack

- Goal: Bypass damage
- > Typically in higher-permeability reservoir
- Short fracture
- > Tip-Screen-Out to increase fracture width

Hydraulic fracturing – Types of applications

Massive hydraulic fracturing

- > Large treatments
- > Low-permeability reservoir
- > Create additional contact area
- > Multiple fractures in a horizontal well

Hydraulic Fracturing

Today:

Some geomechanical notions –

BRGM

innovation

GFZ

much literature on fracture

operations & design

Fracturing of gas shales

What is it?

Breaking the rock by applying

fluid

- pressure
- Tensile failure
- For porous and for non-porous material:
 - To propagate a

fracture:

- $\sigma p_f < -S_0$
- or $p_f > \sigma + S_0$

Physical process

Supported by

0

E

BRGM

innovation for life

Hydraulic fracturing

Hydraulic fracturing – gas shale learning base

Barnett shale

- Very low permeability
- Naturally fractured
- Goal: interconnected fracture network
- > Waterfracturing
- Monitoring

BRGM

innovation for life

- Stress: maximum stress vertical; minimum and medium stresses horizontal
- Modes of fracturing

BRGM

innovation

GFZ

> Hydraulic fracturing: Tensile (mode I) – Vertical fracture has least resistance

Mode I: Opening

Mode II: Sliding

Mode III: Tearing

Hydraulic Fracturing

- Tensile failure, NOT shear failure
- Orientation of the fracture: that direction where $p_f > \sigma + T_0$ first, i.e. σ is minimal (T_0 : tensile strength)
- The normal stress on the fracture wall "tries" to close the fracture
- Therefore the orientation is
 - Perpendicular to the minimum insitu stress direction
 - Parallel to the medium and the maximum in-situ stress direction
 - Vertical
 - Sometimes horizontal for very shallow fractures

Hydraulic Fracturing – Coupled Processes

Hydraulic fracturing

Hydraulic Fracturing

- Fracture growth
- Starting from perforation
- Breakdown pressure: Not easy to model wellbore stability criterion does not work

BRGM

innovation

- Determine propagation pressure with minifrac test
- Equal resistance in all directions within the fracture plane ⇒ Circular crack (penny-shaped)
- Gravity: σ_h increases faster with depth than p_f ⇒ tendency for upwards growth

Hydraulic Fracturing – growth and confinement

Hydraulic Fracturing

- Lithography induces contrasts in minimum in-situ stress
- Lithgraphic density: 2200 kg / m³
- Fluid density: 1000 kg / m³

IGENT ENE

Hydraulic fracturing – Concept

- *K_I*: Stress intensity measure of singular stress behaviour beyond the tip
 Length increases when *K_I* > *K_{Ic}* Volume balance
 Elastic opening
- Leakoff correlation

$$K_{I} = f(w, A)$$

$$K_{I} \approx K_{Ic}$$

$$w = \frac{V_{fracture}}{A_{fracture}}$$

$$\frac{dV}{dt} = Q_{inj} - Q_{leakoff}$$

$$Q_{leakoff} = \int V_{leakoff} dA$$

$$v_{leakoff} = (p_{frac} - p_{res}) \cdot d_{penetrated}$$

$$p_{frac} - \sigma_{3} \propto \frac{W}{L} E$$

$$d_{penetrated} = \int_{0}^{t} v_{leakoff} dt'$$

BRGM

innovation

ECSUPPORTED BRGM

GFZ

Hydraulic Fracturing – Effect of layering, confinement

How BIG are hydraulic frac jobs

- > Fracture treatment volumes can be over 10,000 m3
- > Pump rates can be 100 l/s or more
- Proppant placed up to 1 mln kg
- > Fracture length ranges from 3 to 1500 m
- Treatments cost ranges from \$5,000 to \$5,000,000 USD

GFZ

Experiments (Fisher, 2010)

Supported by

UROPE

Experiments (Fisher, 2010)

- Horizontal well
- Planar fracture surface (vertical)

GECO-ELECO Supported by BRGM GFZ

Stress CONTROLS fracture propagation over modulus

- Stratigraphic layering (and overpressure) cause fractures to be abruptly
- blunted

Fracture Complexity Due To Joints

BRGM

innovation for life

- Store excess volume
- Reduced length
- Additional leakoff
- Additional fracture faces
- May change significantly with time
- > Higher pressure drop
- Additional fracture faces
- > Tip generated effects
- additional stress with shear dilatency
- different prop settling/transport

BRGM

innovation

Modelling versus measuring

An example of a model: Effect of Stress Gradient and Stress Contrast

GECOELEC Supported by BRGM GFZ

Width and length contours ($\Delta \sigma = 2$ MPa)

BRGM

innovation

GFZ

What can we measure/ESTIMATE

- Lithology (logs)
 - Gamma Ray (GR)
 - dynamic modulus (E) and
 - poision ratio (v)
- Micro-seismicity (shear failure only)
- Stress (special measurements MRX)
- Pressure
- Tilt meters

Preferably do a mini-frac test

- More input for design:
- In-situ stresses

GE

- > Fracturing pressures
- Leakoff behaviour
- ISIP = initial shut –in
- Pressure
- Shut-in time

Minifrac test

Supported by

BRGM

innovation

GFZ

Use pressure to constrain fracs

Stress changes during fracturing E E Supported by BRGM GFZ

GECO-ELECO Supported by BRGM GFZ

Sometimes model predictions and measurements agree well

EUROPE

BRGM

innovation for life

GFZ

Supported by

But in other cases not

GE

GFZ

MICROSEISMICITY

MICROSEISMICITY

Determining Distance and Elevation

- Slippage Emits Both P & S Waves (Compressional & Shear)
- Velocities Are Different
 - P Wave > S Wave

Detected At Tri-Axial Receiver

SHEAR SLIPPAGE

Microseismic monitoring

GE

 Numerous cases where fracture grows at or close to microseismic observation well Supported by

- Height can be accurately assessed
- Usually observe fractures following lithology

BRGM

innovation

GFZ

Fracture containment AS a consequence of strength of surrounding layers

- > Variable containment in shales
- Containment (e.g., Barnett)
- Bounded by carbonates
- Upward growth
- Continuous shale
- > Faulting effects

Microseismic data and model calibration-cotton valley sst

Cotton valley sst

Calibrated fracture model

- Calibration data
 - Diagnostic information
 - Height
 - Length
 - Complexity
 - Pressure data
 - Calibration data
 - Closure stress

• Process:

- Match fracture geometry & pressure to assure correct
 - volume
 - Efficiency

BRGM

innovation

GFZ

GECO-ELEC Supported by EUROPE BRGM GFZ

Offset due to natural fractures and faults

microseismicity shows shear fractures

> how about shear fracture mechanisms, aperture and permeability?

Tensile failure – elastic

(S.C Bandis, 1983):

Tensile failure - elastic

Shear failure (shift along fracture plane):

Shear failure

$$\Delta w = \frac{\tau_{eff} - \tau_0}{K_f} \tan(\theta_{dil}),$$

(T. Kohl et al, 2007)

permeability

Cubic law:

$$K' = c \frac{W^2}{12} \cdot \frac{W}{L}$$

W:= Fracture aperture

L := Spacing between fractures

Hydraulic Fracturing in Shale Gas - Observations

- > No two shales alike. They vary aerially, vertically & along wellbore.
- Shale "fabric" differences, in-situ stresses and geologic variances often require stimulation changes.
- > First need Identify critical data set
- > Second need never stop learning about the shale.

Shale Technology

Enabling

- > Slick Water Fracs & Hybrid Fracs
- > Horizontal Wells
- Multi-stage Fracs
- Simultaneous Fracturing

Optimizing

- Critical Data Set
- Frac Complexity
- Special Materials
- Flowback
- Water Management
- Production

Find the Sweet Spot

- Mapping a "sweet spot" in a shale play reduces the risk of economic failure.
- **Critical Variables?**
- Pore Pressure
- Gas in Place
- Maturation
- Depth of Burial
- Natural Fractures
- Shale Thickness
- > Pore or Reservoir Pressure
- Structures?
- Production

Critical Factors vs. Critical Data Set

Factors describe the shale to be evaluated – not the whole play.

Data sets include:

- How to get the most accurate & representative data for the specific shale.
- > Knowledge of what operations are needed to optimize production.
- * "Must have data" includes environmental concerns and resolutions

Natural pathways.
Open at 50 to 60% of rock frac pressure.
Open by low viscosity fluid invasion.
Difficult to prop.
Dominate Permeability

GE ELEC

Supported by

Natural fracture systems

ENE joints mode I cracks

Coupling between geomechanics (friction; fault reactivation) and flow behaviour (dual porosity system)

Supported by

0

Chipperfield, et.al., 2007

BRGM

GFZ

Reservoir Model Description; after Warren and Root (1963) Taken from Chipperfield, 2007

Effect of elastic / plastic behaviour

- > Brittle shales are more easily fractured
- Soft material: Healing of fractures

Dynamic to Static Young's Modulus Correlation

Dynamic E=sonic Static E=mechanical experiment

Design

The goal: Maximize frac contact with shale.

> Wellbore orientation (for transverse induced fractures)

BRGM

innovation

GFZ

- > Wellbore length
- > Toe up or down?
- Number of Frac Stages
- How to place: by average distance or gas shows?
- > Spacing, number, holes? Interference?
- > Hydraulic diversion?

ENT ENER

Supported by

Re-Fracturing

GE

They Work – But Why?

- > Old fractures with gel
 - Slick water fracturing connects to larger part of reservoir
- Change of stress orientation

BRGM

GFZ

Source: Cipolla, et. al., SPE 124843 modified from Warpinski, et. al., SPE 95568.

Fracture Network Complexity

- Complexity develops if natural fracture system is connected to induced fracture and opened
- Observed with microseismic monitoring

Proppant placement

- Proppant settles due to low water viscosity
- Unpropped fracture part still contributes to flow through propped part
- Distinction between brittle material (fractures stay) and ductile material (fractures heal)

GAS SHALE: meaningful parameters

- > Young's modulus (We alreadry looked at this and concluded it was important)
- Static (lab) versus dynamic (log)
- Roughly factor of 2 difference

> Poisson's ratio

> Minimal significance to modeled growth (but importnant thriugh stress

> In Situ Stress

> Important for growth

GECO-ELECO Supported by EUROPE BRGM GFZ

MWX stress measurements and lithology LOG

- 63 microfracstress
 measurements
- Sandstones in blue
- > Shale lithologies in red
- Abundant variability in shale stresses with no apparent difference in lithologies

Water Management

- Cleanup water produced back early
- > Use produced water for later fracture treatments
- Economic and Ecologic advantages

Interference concerns with groundwater?

Not so likely due to excellent vertical confinement

EUR

Hydraulic Fracturing – Other Issues

- > Treatment Design
 - Required Productivity
 - > "Tip Screen Out" design
- Minifrac analysis
 - In-situ stress
 - Leakoff behaviour
 - > Fracture containment
- > Fracture characterization
 - > P & Q recording
 - Tiltmeters
 - Induced seismicity

- > Proppant properties
 - Productivity calculation

BRGM

innovation

GFZ

- > Sand control
- > Strength
- > Frac fluid properties
 - Leakoff control
 - Proppant placement
 - Cleanup
- Unconventional fracturing
 - Naturally fractured low perm (Barnett shales)