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Presentation Outline 

• Geothermal Materials Selection 

– Rules of Thumb and Their Basis (H2S Corrosion) 

• New Rules for New Plant and Processes 

– Engineered Systems, i.e. pH Adjustment 

• Anticipated Extremes for Future Development 

– CO2 Rich, Acid Fluids 

• Asset Integrity Management 

– Risk Based Assessment and Industry Groups. 
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Historical Rules of Thumb (H2S, Chloride) 

 

1. Carbon steel can be used in 2-phase fluid, steam and 

water because protective films are formed when 

oxygen is absent: 

– Oxygen must be avoided, design for scales and 

pitting. 

2. Stainless steels are susceptible to pitting corrosion and 

Chloride Stress Corrosion Cracking (Chloride SCC) and 

Sulfide Stress Cracking (SSC): 

– Suitable corrosion resistant alloys must be selected. 

3. Hydrogen readily diffuses into steels and high strength 

alloys suffer SSC or Hydrogen Induced Cracking 

(HIC/HE): 

– Low strength steels with low stress levels are 

preferred. 

 

3 



 

Oxygen Free Solutions with H2S 

 

Carbon steels form protective films in low chloride 

near neutral pH fluids 
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Oxygen Free Solutions with H2S 

 

Carbon steels form protective films in low chloride near 

neutral pH fluids 

T = 160 C, pH = 6, H2S = 10-4 mol/kg, SiO2 = 4 mg/kg 
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244 hours 572 hours 

Carbon steel corrosion and corrosion products 
Inman, 1994 



 

Oxygen Effect at Shutdown 

 

Carbon steels form protective films in low chloride near neutral pH 

fluids 
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Broadlands-Ohaaki Separated Steam (Well 

BR22) Lichti, 2006 



Oxygen Contamination Effects 

Carbon steels form protective films in low chloride near neutral pH 

fluids 
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NZ Geothermal Steam Comparison - 

Potential-pH Stability Diagrams Lichti, unpublished results 



 

Selection of Corrosion Resistant Alloys (CRAs) 
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Selection of Corrosion Resistant Alloys 
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Heated U-Bend with Steam Condensate 

160C 

Steam 

Susceptible to pitting 

corrosion and 

chloride and 

sulfide SCC 

REQUIRED SCC 

CONDITIONS 

+ Aeration (oxygen) 

+ Corrosive Species 

+ Evaporative 

Concentration 

+ Moisture (wetness) 

+ Tensile Stress 

(Residual) 

+ T > 60 C 

+  Material Susceptibility 

Condensate 

Chloride 

Sulfide 

Lichti et al 1995 



Selection of Corrosion Resistant 

Alloys 
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Cl SCC Cracks May Propagate by 

Corrosion Fatigue 

Cl SCC REQUIRED CONDITIONS 

+ Aeration (oxygen) 

+ Corrosive Species 

+ Evapourative Concentration 

+ Moisture or wetness 

+ Tensile Stress (residual) 

+ T > 60⁰C 

+  Material Susceptibility 

Alloy 2RK65  
63 weeks at 100⁰C  

Drip solution of : 

• geothermal steam condensate 

• 30 mg/kg chloride added  

Lichti et al 1995 



 

Low Strength Steels Resist Sulfide SCC 

 

 Hydrogen readily diffuses into steels and high strength alloys suffer  

Sulfide Stress Cracking (SSC) or Hydrogen Induced Cracking (HIC/HE) 

ANSI/NACE MR0175/ISO 15156-1:2009(E), -2, -3 

Standard Material Requirement for Sulfide Stress Corrosion 

Cracking Resistant Metallic Materials for Oilfield Equipment 

• Sour Water and Sour Gas Systems Definitions. 

– Geothermal Systems Always Considered as “sour.” 

• Hardness and Cold Work Limits for Accepted Alloys.  

– Use as low a Strength as can be tolerated  

by the Design. 

• Heat Treatment Processes Specified. 

• Materials for Specific Facilities Identified. 
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Fabricated Vessel  

• Meets hardness criteria of 

NACE Standard 

• Thickness at limit for heat 

treatment (ASME). 

• Welded with limited number of 

passes – high heat input. 

• High Residual Stress. 

• HE or SSC? 

 

  



pH Adjust and Heavy Metal Scaling 

• Elemental Arsenic and Antimony observed with some pH adjusted 

Brines. 

– Galvanic and erosion corrosion sometimes observed 

– Reasons for heavy metal scaling not known 

• GNS Science Sponsored Laboratory Studies 

– Effect of temperature 

– Effect of pH 

– Effect of aeration / oxidising potential 

– Effect of heavy metal (arsenic vs antimony) and Area Ratios 
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Erosion Corrosion associated  

with heavy metal deposition 

Amend and Yee, 

2013 



pH Adjust and Heavy Metal Scaling 
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• GNS Science Sponsored R&D on Galvanic Corrosion 

– Effect of temperature 

– Effect of pH 

– Effect of aeration / oxidising potential 

– Effect of heavy metal (arsenic vs antimony) and Area Ratios 

 

Lichti, et al, 2015 



Process Induced Acidity 

• Chemistry changes in heat exchanger leading to 

elemental arsenic precipitation 

– Oxidation of steel and reduction of heavy metal 

– Galvanic corrosion contribution to the failure 
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CO2 Corrosion - Corrosion Product 

Stability 
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Model Chemistry with pCO2 = 6.9 bara Model Chemistry with pH2S = 0.02 bara

Lichti, unpublished results 



Engineered Systems CO2 Corrosion 

Factors leading to risk of CO2 Corrosion: 

• Partial pressure of CO2 – lower pH gives higher risk 

• Temperature – lower temperatures give higher risk 

• Flow Velocity – lower soluble iron in solution gives higher risk 

• Inhibitors – H2S at a low level reduces the risk of CO2 Corrosion 

 

19 Humphreys et al, 2015 



Oil and Gas R&D on CO2 Corrosion 

In-situ synchrotron X-ray diffraction (XRD) on Properties of Protective 

Films 

• Study of Controlling Parameters for CO2 Corrosion 

– Effect of  Alloying, Inhibitors, Flow Velocity, H2S Concentration 

• Extension of New Zealand MBIE project - Qatar University, 

Callaghan Innovation, Quest Integrity, GNS Science, University of 

Auckland, plus industry interested parties 
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Ko et al, 2012 



pH Adjust and Acid Well Environments  

Acidic Environments have different film properties 
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S4, pH 3, 150
o
C, SO4

= + HS
-
, 24 h   S4, pH 5, 150

o
C, SO4

=
 + HS

-
, 12 h 

Major  Fe(1+x)S      Mackinawite Major:  FeS      Troilite 

Minor:  FeS          Troilite  Minor: Fe(1+x)S    Mackinawite 

Lichti, Engelberg and Young, 1999 



Field and Laboratory pH Adjustment  
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Lichti, Klumpers  

and Sanada, 2003 

Corrosion Test Results
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Risk Based Assessment - Concepts 

 

• Risk Based Assessment / Aging Power Plants 

– Likelihood of Failure: Damage Mechanisms, Location of 

Damage, Rate of Damage Accumulation 

– Consequences of Failure: Health and Safety, 

Environmental, Cost of Repair and Unplanned Outage 

• Risk = Likelihood * Consequences 

• Risk Based Inspection: Maintenance Planning, Focused 

Turnaround Efforts, To Industry Codes, No Unplanned 

Outage – Living Documentation for Lessons Learned 

• Integrity Operating Windows – Management of Change, 

Validity Range for Risk Assessment 
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Lichti, et al, 2012 



Geothermal Steam-Brine Separators 

Typical Damage Mechanisms 
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Phase 2: Condition Assessment 

and Revised Life Prediction

• Localised Pitting Corrosion

• Erosion at Elbows • Passive Film Formation

Visual Inspection

Lichti et al, 2003 

Ramos et al, 2003 

Lichti et al, 2005 
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Damage Mechanisms to Look For 
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Damage Mechanisms 
1. Erosion Corrosion 
2. Solids Erosion 
3. SSC and HE 
4. Fatigue 
5. Corrosion Fatigue 
6. Surface Corrosion (Uniform) 
7. Localized Corrosion (On-Line) 
8. Localized Corrosion (Standby) 
9. Silica Scaling (Flashing) 
10. Monomeric Silica Scaling (Surface 

Deposition) 
11. Heavy Metal Deposition 
12. Galvanic Corrosion 
13. External CUI 

Inspection Techniques 
A. Internal Visual (Mechanical 

Measurements) 
B. UT Wall Thickness 
C. MPI 
D. Portable Hardness 
E. Portable XRF (Corrosion Product / Scale 

Collection and Analysis) 
F. Dye Penetrant 

 

1,2 

3,4,5 

6,7,8 

9 

10 

13 

11,12, 

13 

1,2 

3 

Following the format in API 571 
Lichti et al, 2013 



Geothermal Steam Turbine Users Group 

• To understand damage mechanisms and 

expected lifetimes of geothermal steam turbines 

and associated components 

• To participate in joint research projects  

• To share experiences and exchange information 

• To share information on design upgrades 

• To research, develop and optimise inspection 

and refurbishment / replacement strategies 
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In Summary – Many Rules … But 

 

1. Oxygen corrosion can be controlled  

2. Corrosion Resistant Alloys can be selected 

3. ANSI/NACE MR0175/ISO 15156-2&3:2009(E) 

must be applied 

4. Process and materials changes should be 

approached with caution: 

– New material-environment combinations present new 

problems 

– Start with the basics and test to verify assertions 

5. Learning from Experience and Sharing 

– Anticipation of Issues and Industry Groups 
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White Island, New Zealand: ?,000 MWe for ?? Years 

Materials for Volcanic Energy  

R&D in New Zealand/Japan (2000) , now Iceland (2012) 
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