Geothermal Heat and Power

S

HIGHLIGHTS

Technolog letwork

- PROCESS AND TECHNOLOGY STATUS The capacity of geothermal power plants in the world totals approximately 9 GW_e, with an annual electricity generation of about 60 TWh_e, equivalent to less than 1% of the global electricity demand. Geothermal heating plants have a global capacity of approximately 18,000 MW_{th} and produce some 63 TWh_{th} per year. In general, technologies for the exploitation of what is called 'conventional and shallow' geothermal energy resources are commercially available. These technologies include: ■ Dry steam plants; ■ Flash plants; ■ Binary plants; ■ Combined-cycle or hybrid plants; ■ Combined Heat and Power based on geothermal energy; ■ Heating based on geothermal energy. However, these resources are rather limited. The challenge is currently the development of Enhanced Geothermal Systems (EGS) – also called 'Hot Dry Rocks' - to exploit *deep geothermal resources*, which could expand considerably the potential of geothermal energy. An overview of temperature levels, applications and the variety of exploitation technologies of geothermal resources is provided in Figure 1.
- **COSTS** The investment cost of **geothermal power plants** depends considerably on site, depth and characteristics of the geothermal resources. A value of \$4000/kW_e (US\$ 2008) may represent an average indicative cost, with considerable variations. Assuming an average annual operation and maintenance (O&M) cost of 3.5% of the investment cost (approximately \$140/kW_e per year), the resulting generation cost is approximately \$90/MWh. For **geothermal-based combined heat and power plants**, the investment cost is higher (typically, \$10,000/kW_e), the O&M costs are around \$250/kW_e per year, and the generation cost may reach approximately \$200/MWh. For **geothermal heating systems**, an average investment cost is estimated at \$1800/kW_{th}, and the O&M costs at \$35/kW_{th}. The heat generation cost is approximately \$45/MWh_{th}.
- **POTENTIAL & BARRIERS** Large-scale geothermal power development is currently limited to tectonically active regions such as areas near plate boundaries, rift zones, and mantle plumes or hot spots. These active, high heat-flow areas include countries around the 'Ring of Fire' (Indonesia, Philippines, Japan, New Zealand, Central America, and the western coast of the United States) and rift zones such as Iceland and East Africa. These areas are most promising for geothermal developments in the next decade, with a potential increase of geothermal power capacity from 13 GW_e in 2010 to 30 GW_e in 2030. If technical breakthroughs made available new geothermal power technologies (EGS), then geothermal power might expand to other regions and commercial geothermal capacity could increase beyond 30 GW_e.

Fig. 1 - Geothermal resource utilisation potential (Antics and Ugemach, 2009)

PROCESS AND TECHNOLOGY STATUS -

Technology letwork

Geothermal resources include basically **low-enthalpy fields**, which have long been used **for direct heating** applications (e.g. district heating, industrial processing, domestic hot water, space heating, etc.) and highquality **high-enthalpy fields** (e.g. high-temperature natural steam at less than 2-km depth), which are used for **power generation**. On a global scale, geothermalbased heat and power amount to 2 EJ/year (IEA, 2008). In 2008, with a global capacity in operation of approximately 9000 MW_e (out of a total installed capacity of about 10,000 MW_e), geothermal power plants generated approximately 60 TWh, that is some 0.25% of the global electricity generation. Geothermal heating plants produced some 63 TWh of heat, with an installed capacity of approximately 18,000 MW_{th}.

Geothermal power generation - Fields of pure natural steam are rather rare. Most geothermal projects are based on a mixture of steam and hot water requiring single- or double-flash systems to separate out the hot water. In general, high-enthalpy geothermal fields are only available in areas with volcanic activity, whereas the rest of the fields are low- or medium-enthalpy resources. Geothermal power generation is currently based on four technology options (Long et al, 2003) that are briefly illustrated as follows. Dry steam plants -Only the Italian geothermal fields of Larderello and the Geysers in the United States provide vapour-dominated fluids (Renner, 2002, Figure 2). In this case, the conversion devices consist of geothermal steam turbines that are designed to make effective use of the comparatively low-pressure and high-volume fluid produced in such conditions. Dry steam plants commonly use condensing turbines. The condensate is re-injected (closed cycle) or evaporated in wet cooling towers. A typical geothermal plants capacity is 50-60 MWe, but more recently 110-MWe plants have been commissioned and are currently in operation (EGEC, 2009). Flash plants - Similar to the dry steam plants, geothermal flash plants are used to extract energy from high-enthalpy geothermal resources, in which, however, the steam is obtained from a separation process (flashing). The steam is then routed to the turbines and the resulting condensate is routed to re-injection or further flashing at lower-pressure. The fluid fraction exiting the separators, as well as the steam condensate (except for condensate evaporated in a wet cooling system) are usually re-injected (Figure 3). The typical size of flash plants is between 2 and 45 MW_e (DiPippo, 1999). Binary plants - Binary plants are usually applied to low- or medium-enthalpy geothermal fields where the resource fluid is used, via heat exchangers, to heat a process fluid in a closed loop. The process fluid (e.g.: ammonia/water mixtures used in kalina cycles or hydrocarbons in organic Rankine cycles, ORC) has physical properties (i.e. boiling and condensation points) that better match to the geothermal resource temperature (Köhler and Saadat, 2003). In the binary plants, the exhaust resource fluids are often re-injected in the field along with all the original constituents. Therefore, these plants are true zero-disch arge technologies (Figure 4).

Fig. 2 - Direct steam geothermal power plant (Sanner, 2007)

Fig. 3 - Flash geothermal power plant (Kutscher, 2004)

Fig. 4 - Binary cycle geothermal power plant (Kutscher, 2004)

The typical size of binary plants is < 5 MW_e (DiPippo, 1999). **Combined-cycle or hybrid plants** - Recent geothermal plants in New Zealand and Hawaii use a traditional Rankine cycle on the top end and a binary cycle on the bottom end (Fig. 5). Using two cycles in series provides a relatively high electric efficiency (DiPippo, 1999; Thain, 2009). The typical size of combined-cycle plants ranges from a few MW up to 10 MW_e (Lund, 1999; DiPippo, 1999).

Geothermal combined heat & power (CHP) -Geothermal CHP from medium-enthalpy sources using organic Rankine cycles and a low-temperature boiling process fluid is cost effective if there is sufficient demand for heat production (e.g. district heating). In general, CHP plants are economically viable and largely used in (Northern) Europe where space heating demand is significant and constant over the year (Internet Source 1; Lund, 2005, Figure 6). Therefore, in these areas, combined heat and power is more used than power generation alone. The typical size of combined heat and power plants ranges from a few MW_e up to 45 MW_e (EGEC, 2009). ■ Heating based on geothermal energy - Both high- and low-enthalpy geothermal resources can be directly used in a number of heating applications, such as space heating and cooling, industry, greenhouses, fish farming, health spas, etc. From the economic point of view, however, direct heat applications are site-sensitive as steam and hot water are hardly transported over long distances (Fridleifsson et al, 2008). The most common application of the geothermal heat is for district heating schemes¹. It is estimated that in 2008 geothermal heating plants produced some 63 TWh, with a global capacity of approximately 18,000 MWth. If the geothermal heat source is of insufficient quality (too low temperature), then geothermal heat pumps can be used as an alternative technology option.

Technology letwork

COSTS – In relative terms, new technologies are helping reduce the cost of conventional geothermal resources and exploit resources that would have been uneconomic years ago from both power generation and field development point of view (Hance, 2005). The investment cost of conventional geothermal power is currently estimated to range from $3400/kW_e$ to \$4500/kWe (EERE, 2009a). These are indicative, average costs that are considerably higher than costs recorded years ago because of the higher prices of materials (steel), engineering, etc. However. geothermal energy investment cost are very sitesensitive. There are sites with very favourable conditions (e.g. Italy, Iceland) where the investment costs are significantly lower. In the United States, the electricity generation cost (levelised cost) based on geothermal power is estimated to range between \$68/MWh and \$118/MWh with an average of \$89/MWh (Sener et al, 2009). For Italy and Iceland, the cost may be at least 20% to 30% lower due to more favourable geological conditions. Table 1 presents cost data for four conventional geothermal power plants in operation or to be built in the US (Internet Sources 2-7), with average investment cost of \$4000/kWe. Assuming annual O&M costs of 3.5% of the investment cost (\$140/kWe per year), then the generation cost is approximately \$90/MWh. For geothermal CHP, the investment cost is approximately \$10,000/kWe, which is more expensive than the 'power only' option mentioned above but offers the possibility to increase overall

Tab. 1 - Costs of Conventional Geothermal Binary-Cycle Power Plants in the US (Internet 2–7)

Project	Capacity [MW _e]	O&M cost [M\$]	Invest. cost [\$/kW _e]	Generation cost ^a [\$/MWh _e]
Thermo (Utah)	10.5	33	3143	78
Faulkner 1 (NV)	40.1	180	4489	94
Hatch (Utah)	40.0	150	3750	N/A
Buena Vista CO	10.0	40	4000	N/A
Aggregate	100.6	403	~4000	~90

a - Generation costs are based on data of supply contracts.

Fig. 5 - Hybrid geothermal power plant (Thain, 2009)

Fig. 6 - CHP plant Neustadt-Glewe (Lund, 2005)

efficiency and generate additional income from heat supply. In this case, O&M cost is $250/kW_e$ per year, and the generation cost may reach approximately 200/MWh. For **geothermal heating**, the average investment cost is $1800/kW_{th}$, the O&M cost is roughly $35/kW_{th}$ per year and the production cost is 45/MWh. Cost projections and estimates based on technology learning and economy of scale suggest that the investment cost of **conventional geothermal power** could come down modestly to $3150/kW_e$ in 2030, with similar reductions for the O&M cost. The reduction of the **geothermal CHP**

¹ In some cases, geothermal heat can also be exploited on small scale for e.g. office building heating and cooling.

investment cost is assumed to be more pronounced, dropping to $6400/kW_e$ in 2030, with corresponding percentage reduction for the O&M cost. The investment costs of **geothermal heating** plants are also estimated to decline to $1500/kW_{th}$ by 2020.

Technology letwork

POTENTIAL & BARRIERS – Large-scale geothermal power development is currently limited to tectonically active regions such as areas near plate boundaries, rift zones, and mantle plumes or hot spots. These active, high heat-flow areas include countries around the 'Ring of Fire' (Indonesia, the Philippines, Japan, New Zealand, Central America, and the western coast of the United States) and rift zones (Iceland and East Africa). These areas are most promising for geothermal developments in the next decade (IEA, 2008).

Table 2 presents the indicative potential of geothermal power generation (in GWe) and geothermal heat (in GW_{th}) based on the current and future technology (Stefansson, 2005). A wide difference exists between the lower and the upper limit of the technical potential, both for geothermal power generation and for geothermal heat. This is due to the potential of new technologies, notably the Enhanced Geothermal Systems (EGS), which could substantially increase the potential of geothermal energy as they could expand geothermal applications in regions other than those that are currently exploited. Table 3 shows how the EGS development is part of the geothermal power potential. Technical potential of geothermal heat and power has been analysed by Bertani (2009) and by Stefansson (2009). Starting from a correlation between the existing geothermal high-temperature resources and the number of volcanoes, the estimated potential is 200 GWe, (Tab. 2, Stefansson, 2009). EGS based on deep geothermal resources could add hundreds of GWe² The global economic potential is estimated at 140 GWe in 2050.

Figure 7 provides a projection of the global geothermal capacity. In 2007, the operative capacity was 8.6 GWe, and the projection for 2010 was from 10.7 GWe to 13.5 GWe (Internet Source 8). In 2008, the US capacity was about 3 GWe (EERE, 2009a), with projections for rapid expansion by 4 to 7 GWe (Internet Source 9). With 4 GWe added in the US (operational capacity) and a world growth roughly consistent with projections (Bertani, 2007), the global 2010 capacity could be in the order of 13.3 GWe. According to Global Data (2009), further 7.5 GWe could be added between 2010 and 2015. Other sources (Internet Source 10) estimate that a capacity addition of 2 GWe per year may be feasible in some five years. The geothermal capacity is therefore expected to grow by 16.5 GWe between 2010 and 2020 (Figure 7). More detailed projections by country are provided in Table 4.

Tab. 2 - Estimated technical potential (GW) of world'sgeothermal resources (Stefansson, 2005)						
Lower limit technical		Potential for identified	Upper limit technical			

	potential	resources	potential
Power Generation Resources	50	200	1000-2000
Direct Heating Use Resources suitable for	1000	4400	22,000-44,000

Tab. 3 - Geothermal technology development, barriers and opportunities (EERE, 2009b)

			•			
٦	ſech.	ch. State of art		Innovation	Applied to	
C	Drilling	Rotary table rigs; Trone roller and PDC bits; Telescoping casing; wireline downhole.	Costs & Temp. Limits; designed for oil, gas	Continuous drilling; monobore casting; casing while drilling; high-temp. tools	Hydro- th. fields, EGS	
F	Reservoir Stimulatior	Demo projects, 25 kg/s flow rates, 1 km ³ reservoir volume	Immature tech., 40- 80 kg/s flow rates needed	High-temp. packers, novel well interval isolation techniques, 'first-to- commercial'	Marginal hydro-th. fields, EGS	
C F	Downhole Pumps	Line-Shaft Pumps to 600 m, Electric Submersible to 175°C	Temp. and Depth Limits	High-temp. electrical submersible pumps	EGS, hydro-th. fields 175– 225C (too hot to pump, too cool to flash	
E C F F	Energy Conversior Systems Power Plants	Binary cycle (isobutane): 100–200+C, Cooling Towers, Air-Cooled Condensers	Efficiency limits, low power output at high room temp.	Supercritical Rankine cycle, novel binary fluids, adv. cooling	Medium- low temp. hydro- thermal, EGS	
E E F T	Exploratior and Resource Fests	Surface evidence; ground heat- flow tests; well exploration; stress field analysis (EGS)	Costly well expl. & drilling; time (yrs) to prove a field	GIS mapping geoth.indic. to assess resources novel techs for field test temp, stress, fluid, depth, airborne identification	Hydro- thermal, EGS	

 $^{^2}$ EGS in the US could provide more than 100 $\mbox{GW}_{e},$ (Thorsteinsson, 2008).

TSA PENERGY TECHNOLOGY SYSTEMS ANALYSIS PROGRAMME © IEA ETSAP - Technology Brief E07 – May 2010 - www.etsap.org

ergy Technology letwork

Tab. 4 - Projected operative geothermal capacity [MWe]									
Country 2005 2010 2015 2020 Country					2005	2010	2015	2020	
Australia	0.1	0.2	200	314	Japan	530.2	530	600	675
Argentina	0.7		50	100	Kenya	128.8	145	300	471
Austria	1.1	1.1	20	30	Mexico	953	1040	1300	1550
China	18.9	25	100	250	New Zealand	403	521	818	1284
Costa Rica	162.5	174	273	429	Nicaragua	38	126	198	311
El Salvador	119	180	283	444	Papua New Guinea	6	49	78	122
Ethiopia	7.3	7.3	11	18	Philippines	1838	1856	2000	2200
Guadeloupe	14.7	31	49	76	Azores(Pt)	13	31	49	76
Germany	0.2	7	100	250	Russia	79	163	256	402
Guadeloupe (F)	29	47	73	115	Thailand	0.3	0.3	50	79
Iceland	202	450	650	850	Turkey	18	73	115	181
Indonesia	838	1052	1200	1350	United States	1,935	5,970	11,159	17,520
Italy	699	803	900	1000	Total	8035	13,282	20,831	30,096

Tab. 5 – Summary Table: Key Data and Figures for Geothermal Heat and Power Technologies

Technical Performance	Typical current international values and ranges								
Energy input	Geothermal energy								
Output	Electricity								
Technologies		Binary cycle Comb. Heat & Power					Hea	Heat plant	
		BIN			СНР			HP	
Efficiency, %		8 – 15		N	lot applicab	le	Not ap	plicable	
Construction time, months	Minimum 12; Typical 24; Maximum 36								
Technical lifetime, yr				30	-50+				
Load (capacity) factor, %		80			80			55	
Max. (plant) availability, %		95			95			95	
Typical (capacity) size, MW _e		25			0.5		1	00	
Installed (existing) capacity, GW _e	9-	–10 (all type	es)		<<1		18 (es	stimate)	
Average capacity aging			Diff	ers from c	ountry to co	untry			
Environmental Impact			Bill			Junity			
CO, and other CHC emissions		Nogligible		1	Nogligible		Nog	ligiblo	
kg/MWh	педіідіріе			Negligible			Negligible		
SO ₂ , g/MWh		Negligible		Negligible			Negligible		
Costs (US\$ 2008)									
Investment cost, incl. interest during	3400 – 4500			6000 – 15,000			1000	- 3000	
construction, \$/kW									
O&M cost (fixed and variable), \$/kW/a		120		250			20	- 60	
Fuel cost, \$/MWh		N/A		N/A			N/A		
Economic lifetime, yr					20				
Interest rate, %					10				
Total production cost, \$/MWh		80 – 110		120 – 300			25 – 75		
Market share		0.25		Negligible			N/A		
Data Projections	2010			2020			2030		
Technology	BIN	CHP	HP	BIN	CHP	HP	BIN	CHP	
Investment cost, incl. interest during	4,000	10,000	1,800	3,500	8,000	1,500	3,100	6,400	
construction, \$/kW (BIN/CHP/HP)									
Total production cost, \$/MWh	90	200	45	79	160	37.5	70	130	
Market share, % of global electricity	~1/4	~1/4 <<1 ~1/2 <<1					1–2	<1	
output									

References and Further Information

ergy/Technology Network

- Antics, M., and Ungemach, P. (2009): Defining Geothermal Resources and Geothermal Sustainability. GTR-H 1. Closing Conference, Dublin, Ireland, 30 September - 1 October 2009. http://www.gtrh.eu/downloads/Antics GTR-H%20Dublin%2020091001.pdf
- 2. Bertani, R. (2009): Long-term Projections of Geothermal-electric Development in the World. ENEL, Italy, 2009.
- http://www.iea-gia.org/documents/LongTermGeothermElecDevelopWorldBertanioffenburg23Feb09.pdf. Bertani, R. (2007): World Geothermal Generation in 2007. GHC Bulletin, September 2007, pp. 8-19. 3. http://geoheat.oit.edu/bulletin/bull28-3/art3.pdf.
- DiPippo, R. (1999): Small Geothermal Power Plants: Design, Performance and Economics. GHC Bulletin, June 4 1999, pp. 1-8. http:// geoheat.oit.edu/bulletin/bull20-2/art1.pdf .
- EERE (2009a): 2008 Geothermal Technologies Market Report. Energy Efficiency & Renewable Energy (EERE), 5.
- US Department of Energy, 2009. <u>http://www.nrel.gov/applying_technologies/pdfs/46022.pdf</u>. EERE (2009b): Geothermal Technologies Program Recovery Act Funding Opportunities. EERE, USA, June 2009. <u>http://www1.eere.energy.gov/geothermal/pdfs/recovery_act_funding_opportunites_webinar.pdf</u>. 6.
- EGEC (2009): Geothermal electricity and combined heat and power. European Geothermal Energy Council 7. (EGEC), Brussels, Belgium, 2009. http://www.egec.org/target/EGEC-Brochure%20GECHP%202009.pdf
- 8. Fridleifsson, I. B., et al (2008): The possible role and contribution of geothermal energy to the mitigation of climate change. IPCC Scoping Meeting on Renewable Energy Sources, Proceedings, Luebeck, Jan 2008, pp. 59-80. http://www.iea-gia.org/documents/FridleifssonetalIPCCGeothermalpaper2008FinalRybach20May08 000.pdf.
- GlobalData (2009): Geothermal Generation Capacity until 2015. GlobalData, 2009. 9. http://thinkgeoenergy.com/archives/1158

Г<mark>S</mark>A

- Hance, C.N. (2005): Factors Affecting Costs of Geothermal Power Development. Geothermal Energy Association, 10. Washington DC, USA, August 2005. http://www.geo energy.org/publications/reports/Factors%20Affecting%20Cost%20of%20Geothermal%20Power%20Development %20-%20August%202005.pdf
- IEA (2008): Energy Technology Perspectives 2008 International Energy Agency (IEA), Paris, June 2008. 11.
- Köhler, S., and Saadat, A. (2003): Thermodynamic Modeling of Binary Cycles Looking for Best Case Scenarios. 12. International Geothermal Conference, Reykjavík, Iceland, Sept. 2003. http://www.jardhitafelag.is/media/PDF/S01Paper061.pdf.
- Kutscher, C. (2004): Geothermal Electric Power. NREL, USA, May 20, 2004. 13 http://www.ncfap.org/documents/Kutscher%20-%20Geothermal%20for%20NASULGC.pdf.
- Long, M., et al (2003): Geothermal Power Production: Steam for Free. POWER Engineers, Idaho, USA, 2003. 14. http://www.powereng.com/uploadedFiles/News/Articles/Power-Gen-Geothermal.pdf
- Lund, J.W. (2005): Combined Heat and Power Plant Neustadt-Glewe, Germany. GHC Bulletin, June 2005. 15. http://geoheat.oit.edu/bulletin/bull26-2/art8.pdf.
- Lund, J.W. (1999): Small geothermal 16. power project examples. GHC Bulletin, June 1999. http://geoheat.oit.edu/bulletin/bull20-2/art2.pdf
- 17. MIT (2006): The Future of Geothermal Energy Impact of Enhanced Geothermal Systems (EGS) on the United in the 21st Century. Massachusetts Institute (MIT), of Technology USA, 2006. States http://www1.eere.energy.gov/geothermal/future geothermal.html
- 18. Renner, J.L. (2002): Geothermal Energy in the United States. Harnessing untapped geothermal power. IEEE 2002 Summer Power Meeting, Chicago, USA, July 22, 2002. http://www.ewh.ieee.org/cmte/ips/2002SM/GeothermalPower.pdf
- Sanner, B. (2007): Geothermal Power Generation. Renewable Energy Europe 2007, Madrid, Spain, June 2007. 19. http://www.egec.org/target/madrid%20280607.pdf.
- 20. Sener, A.C. et al (2009): Perspectives on the Economics of Geothermal Power. GRC Transactions, Vol. 33, 2009 .
- http://www.icfi.com/docs/geothermal-power.pdf. 21.
- 22. Stefansson, V. (2005): World Geothermal Assessment. Proceedings World Geothermal Congress 2005, Antalya, Turkey, 24-29 April 2005. http://geothermal.stanford.edu/pdf/WGC/2005/0001.pdf.
- Thain, I. (2009): Review of Carbon Emission Factors in Draft Stationary Engine and Industrial Process 23. Regulations: Using Geothermal Fluid. Geothermal & Energy Technical Services Ltd, Taupo, New Zealand, 12 May 2009. http://www.climatechange.govt.nz/consultation/draft-regulations-seip/review-carbon-emission-factors.pdf.
- Thorsteinsson, H.H. (2008): U.S. Geothermal District Heating: Barriers and Enablers. Degree of MSc in 24. Technology and Policy at Massachusetts Institute of Technology (MIT), June 2008. http://dspace.mit.edu/bitstream/handle/1721.1/42932/251518357.pdf?sequence=1
- USGS (2008): http://pubs.usgs.gov/fs/2008/3082/pdf/fs2008-3082.pdf. 25.
- Internet Source 1: http://geoheat.oit.edu/bulletin/bull26-2/art1.pdf. 26.
- Internet Source 2: http://www.renewableenergyworld.com/.../raser-geothermal-unit-to-feed-power-to-anaheim-by-27. october-52999
- 28. Internet Source 3: http://www.uprm.edu/aceer/pdfs/RE Project Finance.pdf.
- 29. Internet Source 4: http://www.nevadageothermal.com/i/pdf/NGPNewsletterMarchFINAL.pdf.
- 30. Internet Source 5: http://ruby.sys-con.com/node/669560/mobile
- Internet Source 6: http://www.geothermalglobe.com/ 31.
- Internet Source 7: http://www.istockanalyst.com/article/viewiStockNews/articleid/3414464 32.
- Internet Source 8: http://geoheat.oit.edu/bulletin/bull26-2/art1.pdf. 33.
- Internet Source 9: http://www.geo-energy.org/publications/reports/GEA%20World%20Update%202007.pdf. 34.
- Internet Source 10: http://www.renewableenergyworld.com/rea/news/article/2009/05/geothermal-development-35. expands-globally