Mechanical equipment and operation and maintenance

Session VI

Elín Hallgrímsdóttir and Lilja Tryggvadóttir

Mannvit

Strasbourg, Nov. 8th, 2012

Presentation overview

- Features of mechanical equipment used in geothermal power plants
- Example showing methods used for choosing a gas extraction system
- O&M with photographs of extreme conditions shown

Power Plant Preliminary P&ID

NERGY

Power Plant - Turbine

- Axial turbines
 - Single flow
 - Double flow
- Turbo expander

Single and double flow turbines

single flow

20 - 70 MW

Double flow

40 - 140 MW

Double pressure

6,3/1,4 bara -> 0,1 bara

Turbine sectional view

Power Plant – Turbine / generator

- Rotor
 - Turbine blade size is over 30"
 - Corrosion protection on the last stages
- Turbine drain
- Double steam inlet Stem free test
- Generator
 - Overpressure in generator housing

Power Plant - Heat Exchangers

- Evaporators/recuperators
 - Conventional shell and tube or plate heat exchangers
 - Hybrid
- Condensers
 - Direct contact
 - Indirect contact

GE®

- Shell and tube
- Special cooling section for gas

Power Plant - Gas extraction system

- Type
 - Compressors
 - Vacuum pumps
 - Ejectors
- Selection
 - Gas content
 - Condenser pressure
 - Cost evaluation
 - Price of electricity/steam

NERGY

Power Plant - Cooling Tower

- Type
 - Wet
 - Hybrid
 - Dry
- Selection
 - Cost efficiency
 - Availability of water
 - Visual impact

ENERGY

Wet CT

Hybrid CT

Power Plant - Layout

Axial Exhaust

Top Exhaust

Down Exhaust

 Total concrete required and complexity of the foundation design are also significantly reduced

- Axial diffuser effectively transforms exhaust velocity into pressure, thereby minimizing exhaust loss

GE Co-ELEC

 Triple turning of the exhaust flow creates the biggest loss

-Conventional design with single turning produces moderate exhaust loss

6

GE E E E

Layout – 45 MW unit at Hellisheiði

Power Plant – Building

- Turbine hall
 - Conventional steel structure
- Connecting buildings
 - Housing electrical rooms
 - Concrete building to achieve higher tightness
- Earthquake requirements

Layout – 133 MW hot water plant at Hellisheiði

Example

- Selection of gas extraction system
- Assumptions
 - Gas content 1% gas
 - Steam consumption 83 kg/s
 - Price of steam 500.000 EUR/kg/s
 - Price of electricity 300.000 EUR/100 kW

Example, continued

- Vacuum pumps
 - Electrical consumption 1200 kW
 - Capital cost 400.000 EUR
- Ejectors
 - Steam consumption 5 kg/s
 - Capital cost 100.000 EUR
- Hybrid system
 - Electrical consumption 300 kW
 - Steam consumption 2 kg/s
 - Capital cost 200.000 EUR

Example, continued

- Evaluation formula
 - CC+EC*PE+SC*PS
 - Capital Cost (CC)
 - Electrical Consumption (EC)
 - Price of Electricity (PE)
 - Steam Consumption (SC)
 - Price of Steam (PS)

- Vacuum pumps:
 - 400.000 + 1200*300.000/100 = 4.000.000 EUR
- Ejectors
 - -100.000 + 5*500.000 = 2.600.000 EUR
- Hybrid system
 - 200.000+2*500.000+300*300.000/100=2.100.000 EUR
- Hybrid system would be selected.
 Please note that numbers are fictive.

Operation and maintenance

 In this session operation and maintenance of geothermal power plants with emphasis on the geothermal part of the plant is introduced. Photographs of extreme conditions will be shown.

Geothermal Power Plants

Included in Operation & Maintenance

- Central operation centers
- Observation of machinery
- Security
- Operation supplies (chemical for cooling water, inhibitors, oil, filters for air cleaning, cleaning products, binary fluid)

Geothermal Power Plants

Operation & Maintenance

- Maintenance work (rotor and generator every 15 years)
- Maintenance supplies
- Monitoring of the reservoir and area
- Drilling for maintaining steam

Operating Console

Turbine Monitoring

Wellhead

Enclosure Wellheads

Well Discharge in Winter

Well Discharge in Winter

Wellhead Master Valve

Well Cleaning during Discharging

Steam Separator for 60 kg/sek

Cooling Tower in Winter

Turbine Rotor

Cleaning of Rotor

Scaling on Rotor

Scaling in Stationary Diaphragms

Erosion in Stationary Diaphragms

Erosion in Stationary Diaphragms

Erosion in Stationary Diaphragms

Diaphragm Repaired by Welding

Diaphragms Repaired by Welding

Erosion of Rotor

Damages Caused by Drainage

Improvement of Drains in Turbine

Drains in Turbine

Shut Down Valve Axle

Shut Down Valve End Bearing

Turbine and Generator Bearings

Oil filter

Oil System

Broken turbine blades

Damaged turbine housing

Generator broken

Thank You! VISIT GEOELEC.EU

