Process flow and gathering system

Session VI

Elín Hallgrímsdóttir and Lilja Tryggvadóttir

Mannvit

Strasbourg, Nov.8, 2012

Presentation overview

- Presentations reviewing different work cycles
- Main concept of the gathering system
- Calculated example showing methods used within geothermal steam gathering system design

GE E

Supported by INTELLIGENT ENERGY EUROPE

Adapted from Lindal diagram

Balneologi/

sport

°C

Geothermal in Iceland

Process flow

- A review of thermodynamic cycles used in geothermal energy production with emphasis on electricity generation
- Flash steam cycles with single flash and double flash as well as different binary cycles as ORC and Kalina Cycle are introduced and compared

Back Pressure Steam Power Plant

Back pressure unit - layout

Calculated examples Different turbine outlet pressure

Steam Power Plant with Condenser

GE E E E

Steam Power Plant – Double Pressure

Svartsengi – the "Octopus"

ENT ENERGY

Steam Power Plant – Double Flash

Hellisheiði – low pressure unit

Steam Power Plant w. District Heating

District heating plant

Process Flow Diagram

Binary Cycles

Binary Cycles – with Recuperation

Binary Plant Berlin – El Salvador LaGeo

Binary Cycles – Kalina

Húsavik Kalina plant

Binary Cycles – Kalex

Work Cycle Comparison Specific Power

ENERGY

Work Cycle Cost Comparison

Demonstration of model

 <u>Turboden ORC model:</u> <u>http://www.turboden.eu/en/rankine/rankine-</u> <u>calculator.php</u>

Gathering System

 This session will present an overview of the design process of a geothermal gathering system with emphasis on particularities of the geothermal fluid.

Steam Supply - Preliminary P&ID

Nesjavellir Power Plant

Cooling towers Power Plant

Production Two phase Well flow Steam vent station Separation station

Supported by INTELLIGENT ENERGY EUROPE

Gathering system- Design

- Design standards
 - Standards i.e.
 Pressure directive
 97/23/EC
- Pressure selection
 - Chemical constraints
 - Power generation

GE® ELEC

• Productivity curves

Chemical constraints

- Scaling
- Corrosivity
- Radioactivity

Mitigation:

- Pressure control / closed loop system
- "cleaning" of the steam
- Inhibitors

Typical productivity curves

Supported by

R 0

ENT ENERGY

GE Co-ELEC

Well Pump – Low Enthalpy

- Type
 - Submersible pump
 - Line shaft pump
- Selection and operation
 - Depth
 - Temperature
 - Scaling
 - Bubble point

ENERGY

Gathering System– Design load

- Constant load
 - Weight
 - Pressure
- Variable load (depending on location)
 - Wind load
 - Snow load
 - Earthquake
- Frictional load
 - Thermal expansion
 - Friction

Gathering System - Pipelines

- Pipe laying
 - Under ground
 - Above ground
- Material selection
- Pipe size
 - Pressure/temperature

NERGY

Steam Supply System – Pipelines

Gathering system – route selection

- Public safety
- Environmental impact
- Restriction on land
- Cost efficiency

Steam pipelines

Steam Supply - Layout

- Central separation station
- Satellite separation stations
- Individual separators

Power plant layout

Two phase flow in

Steam out

Separated

water out

Steam Supply - Separators

- Cyclone separators
- Gravity separators

- Efficiency
 - Steam separator and moisture separator should together achieve 99,99 % bw. liquid removal or better

Calculated example

 The presenter will go through a calculated example to show methods used for basic engineering within steam gathering system design. The example taken will be connected to the special conditions encountered in geothermal energy.

Example

- Example for 1200 kJ/kg well enthalpy
 - 40-50°C condensing temperature
 - Back pressure
- Objective

Maximize the power production

- Assumptions
 - We know the reservoir enthalpy
 - We know the condenser temperature
 - Separation pressure does not influence the well flow

Example, condensing unit

Supported by INTELLIGENT ENERGY EUROPE

Example, condensing unit

- The maximum power will be 12,4 MW
 - Entalpy = 1200 kJ/kg
 - Condensing pressure 0,075 bara / temperature
 40°C
 - Separation pressure 6 bar_a
 - Flow 100 kg/s
- What if we selected backpressure instead?

Example, back pressure

Supported by INTELLIGENT ENERGY EUROPE

Example, back pressure

- The maximum power will be 6,4 MW
 - Entalpy = 1200 kJ/kg
 - Separation pressure 12 bar_a
 - Flow 100 kg/s

Example

- Optimum separation pressure is 6 bar_a, is that ok?
- Saturation temperature for 1200 kJ/kg is 273°C

ENERGY

Thank You! VISIT GEOELEC.EU

