GEOELEC training course Strasburg

Session VII: Plant operation, energy supply and grid integration Geothermal power in the reality of the electricity market

NAME: Sören Reith

ORGANISATION: EnBW AG, Germany 2012

Strasburg, 8th November

Geothermal power in the reality of the electricity market

Session VII: Plant operation, energy supply and grid integration

GEOELEC training course Strasbourg 8. November 2012

Topic of the presentation: energy supply, electricity grid & plant operation department: Research & Innovation author: Sören Reith version: 121107

Energie braucht Impulse

Table of content

–Տսթր

- 1. Energy supply
 - a. Regulation
 - b. Energy trade
 - C. Support Systems for RES in Europe
- 2. Electricity grid
 - a. General structure of the electricity grid
 - **b.** Power flows in Europe
 - C. Integration of renewable energies
 - d. Control of the European electricity grid

- 3. Plant operation
 - **a.** Demand for geothermal power
 - b. Lessons learned

Brief portrait EnBW Energie Baden-Württemberg AG

– ՀոՑա

En!3W

- > One of the largest energy companies in Germany and Europe
- Business segments: electricity generation and trading, electricity grid and sales, gas, energy and environmental services
- > Annual revenue 2011: in excess of € 18 billion
- > Customers: some 5,5 million
- > employees: some 20,000

Business segments - electricity

Electricity generation and trading

13, 402 MW Generation capacity thereof 2538 MW from renewable energies

59,500 GWh own generation

2

geothermal power plants: Bruchsal (hydrothermal) Soultz-sous-Forêts (EGS)

Electricity grid

153,166 km Electricity grid

34,600 km²/18,892 km²

Transportation network/Distribution network

2.95 Million House connections

Sales

EnBW

65.5 GWh Electricity sold

4

Brands: EnBW; yellow; watt; Naturstrom

~ 5.5 million Customers in Germany

Geothermal power plant – Soultz-sous-Forêts French-German consortium (federal agencies, research agencies; industry)

Flow rate

70 °C

Thermal capacity Power plant boreholes 25-35 l/s ORC power plant EGS-power plant ~ 19 bar 4 175 °C Number of boreholes Pressure Flow temperature Isobutan 3600 m / 5100 m / 5100 m Working fluid / 5260 m Return flow temperature Depth of GPK1/GPK2/GPK3/GPK4 Air cooling tower ~ 14 MW **Electric submersible** Thermal capacity ~ 2,1 MW pump/ lineshaft pump Gross electrical output

Geothermal power plant in Soultz-sous-Forêts, France Upper Rhine Valley

Geothermal power plant – Bruchsal consortium between ewb & EnBW

Table of contents

- 1. Energy supply
 - a. Regulation
 - **b.** Energy trade
 - **C.** Support Systems for RES in Europe

2. Electricity grid

- a. General structure of the electricity grid
- **b.** Power flows in Europe
- C. Integration of renewable energies
- d. Control of the European electricity grid

- 3. Plant operation
 - a. Demand for geothermal power

EnBW

b. Lessons learned

> 96/92/EC – Liberalization of electricity and gas markets

- > Free Choice of electricity supplier
- > Unbundling of production; transport; distribution; sales/trade
- > Discrimination free grid access
- > Network fees are regulated

Electricity trade in the liberalised market

– ՏոՅի

Electricity trade in the liberalised market

Development of the electricity price - theoretical

- > Electricity prices develop through the equilibrium of
 - > Offered power plant capacity (Merit-Order)
 - > Load demand.
- > Amount offered, price and demand are influenced by different circumstances.
- > Typically there are hourly price equilibriums identified
- → This means 8760 different markets with different influencing factors
- > The last power plant sets the price

– ᢄոՑѠ

Support Systems for renewable energy in Europe Directive 2009/28/EC

Goals

- \rightarrow Reduction of CO₂ emissions
- > Reduction of the dependence on fossil energies
- > Fulfilment of the individual goals from directive 2009/28/EC
- > Directive 2009/28/EC guaranties a priority feed-in for Renewables

	Feed-in tariffs	 Legal determined feed-in tariff Customers are charged for the extra costs
	Quota systems	 Legally determined quota for RES in the elec. production Projects are financed through energy price and certificate price
	Tender models	 Tendering for a fixed amount for renewable capacity Cheapest project is done
	Tax reduction	Tax reduction for renewable energyWidely used
14 L 13 11 2012 EnBW HOL TE L Sören Reith LGEOELEC training course Strasburg		

Support Systems for renewable energy in Europe

Տոթր

15 I 13.11.2012 EnBW HOL TF I Sören Reith I GEOELEC training course Strasburg

Table of contents

- 1. Energy supply
 - a. Regulation
 - b. Energy trade
 - C. Support Systems for RES in Europe
- **2.** Electricity grid
 - a. General structure of the electricity grid
 - **b.** Power flows in Europe
 - **C.** Integration of renewable energies

- 3. Plant operation
 - **a.** Demand for geothermal power

EnBW

b. Lessons learned

The electricity network

– ᢄո᠑Ѡ

Load distribution in the network

– ՏոՑա

Load and demand in Europe

Country analyses under normal & severe conditionS

–Տոթր

Source: entso-e

Physical power flows between Germany and Switzerland 17.10.2012

EnBW

21 I 13.11.2012 EnBW HOL TF I Sören Reith I GEOELEC training course Strasburg

Possibilities for congestion management *Auction*

- > Most congestion in the European electricity network are managed through auctions
- > Every market participant bids for the "right" to transport electricity from his controlling zone to the other through the congestion between the control zones.
- > Normally there are auctions for different time periods (year, month, day)
- Similar to the electricity trade at the spot market there is closed order book and a deadline for bids
- > Bids are sorted according to the price descending
 - > Price and amount of needed capacity
 - > The highest price wins
 - > The last achievable bid sets the price

Tenderers A, B, C win the auction

ՇոՑև

- C can only use a part of its desired capacity
- D doesn't get any transport capacity
- The costs for the capacity of A, B, C are set by the price of C

22 | 13.11.2012

EnBW HOL TF I Sören Reith I GEOELEC training course Strasburg

Transport capacity – a more and more scare good *Challenges for the network operation in Europe*

Example: TenneT-control zone

- Currently there is a high burden through wind energy and trade flows from Scandinavia
- > 6.200 MW transport capacity/ 3.500 MW min. demand

Example:

- Central Europe at the 22.12.04, 17:30 h, phys. Load flows
- > Wind feed-in: 11,461 MW
- > Export balance: ca. 6200 MW

Result:

- With a growing wind feed-in the electricity is pushed in the neighbouring countries
- Growing stress on the cross-border transfer capacity
- > Overloading of the neighbouring networks

- Additional wind capacity
- Integration of new power plants
- Expansion of transport capacity with Scandinavia is demanded

EnBW

23 | 13.11.2012

EnBW HOL TF I Sören Reith I GEOELEC training course Strasburg

Wind energy feed-in in the TenneT-network, Aug. 2010 prognosis and real feed-in

EnBW

24 I 13.11.2012 EnBW HOL TF I Sören Reith I GEOELEC training course Strasburg

The Challenge *Difference between electricity demand and operating wind capacity*

εnΒω

Balancing power *Theoretical process of frequency-power-regulation*

27 I 13.11.2012 EnBW HOL TF I Sören Reith I GEOELEC training course Strasburg

-Տոցի

Balancing power – security system of the electricity business

Demand for balancing energy in Germany 5200 MW thereof 2500 MW for minute reserve

VDN-5-steps plan to limit disorders in the electricity grid

50,0 Hz Step 1: 49.8 Alerting the control centres; Use of the not mobilised power plant capacity 49,5 Disruption of the Step 2: integrated network Immediate disconnection of 49. 04.11.2006: 49,0 10 - 15% network load load drop at 49,0 Hz Step 3: Immediate disconnection of - in France approx.. 5.000 MW additional 10 – 15 % network load - at Amprion approx.. 2.000 48,5 MW Step 4: Immediate disconnection of - at TenneT ca. 400 MW additional 10 – 15 % network load - at TransnetBW approx.. 158 48.0 MW (approx.. 2% of the current network load) - Additional load drops in Step 5: Belgium, Italy and Spain 47.5 disconnection of power plants from the network

Trouble history – 4th November 2006 Frequency curve in the south-west UCTE-network

Frequenz

EnBW

30 I 13.11.2012 EnBW HOL TF I Sören Reith I GEOELEC training course Strasburg

Table of contents

– ՏոՑա

- 1. Energy supply
 - a. Regulation
 - b. Energy trade
 - C. Support Systems for RES in Europe
- 2. Electricity grid
 - a. General structure of the electricity grid
 - **b.** Power flows in Europe
 - C. Integration of renewable energies
 - d. Control of the European electricity grid

- **3.** Plant operation
 - **a.** Demand for geothermal power
 - b. Lessons learned

European directives and goals concerning renewable/geothermal energy sources

– Տոցր

> European directive 2009/28/EC

- > Article 2a: "energy from renewable sources' means energy from renewable non-fossil sources, namely wind, solar, aerothermal, geothermal, ... "
- > Article 2c: "geothermal energy' means energy stored in the form of heat beneath the surface of solid earth;"

32 I 13.11.2012 EnBW HOL TF I Sören Reith I GEOELEC training course Strasburg

Geothermal power plants in Germany

–Տսթր

Capacity factors for electricity production Availability of power plants

Nuclear Geothermal **Combined Cycle** Coal Biomass IGCC Wind (onshore) Wind (offshore) Solar Thermal **Photovoltaics** 40% 20% 30% 60% 80% %00 100% 0% 10% 50% 70% Source: (Tidball, Bluestein, Rodriguez, & Knoke, 2010)

EnBW

34 I 13.11.2012 Bereich I Name I Datum I Dateiname

Future demand for base load power

35 I 13.11.2012 EnBW HOL TF I Sören Reith I GEOELEC training course Strasburg

– Տոցր

Renewable heat production – the sleeping giant of climate protection

- > Ambitious goals for renewable heating in Europe
- > 10.2 % of German heat demand (heating; warm water) comes From RES (2011)
- > In Germany around 90 % of a households energy demand is used for heating
- > Only 3 renewable Sources

^{36 | 13.11.2012}

EnBW HOL TF I Sören Reith I GEOELEC training course Strasburg

Source: Nitsch et. al 2012
Mineralisation of the brine (Bruchsal)

EnBW

37 | 13.11.2012

Scaling - Bruchsal

Source: ewb Bruchsal

Measures to handle scaling and corrosion

EnBW

> Thermodynamic equilibrium

- Keep pressure and temperature constant
- > Less precipitation
- Inhibitors
 - > Currently no convincing solution available
 - Practical test are necessary
- > Carbon steel pipes with extra thick walls
 - > Non corrosive steel is to expensive
 - > Thicker walls allow a certain corrosion

Two Phase Flow: CO₂ and Aqueous Phase

Two Phase Flow: CO₂ and Aqueous Phase

- > Technical measures to prevent precipitations and low efficiency of heat exchange:
 - > Pressure maintenance
 - > Acidifying
 - > Application of inhibitors

Pumping technologies applied and tested in Soultz

Three different kind of pumps are used in the geothermal loop

Line Shaft Pump (LSP): the hydraulic pump is down-hole, the motor drive is at surface, connection being done through a line shaft
mechanical risk

- mechanical risk
- Electric Submersible Pump (ESP): both electrical motor and pump are downhole, the motor drive is fed by a MV cable
 electrical risk
- Injection pumps : horizontal, multistage high pressure pump (surface equipment)

44 I 13.11.2012 EnBW HOL TF I Sören Reith I GEOELEC training course Strasburg

Key data LSP - located in well GPK2

> Design data:

- > Ordered in June 2006 (Manufacturer: IGE Ltd.)
- Initial shaft length of 350 m
- Max. volume flow 40 l/s
- > Surface motor 350 HP, Variable Frequency Drive
- Lubrication by demineralized tap water
- > operation conditions:
- Initial productivity of GPK2 was 1 l/s/bar
- Productivity improved during operation time
- > The LSP is now installed at 270 m depth due to verticality issue
- > ~ 25 l/s, ~170 °C and a TDH of 300 400 m

Working principle and general configuration of LSP

Working principle and general configuration of LSP

-Տոթր

riser, enclosing tube, shaft

Teflon bearings

hydraulic part, 17 stages

motor/shaft coupling

view at well head/motor

Operating time and maintenance of LSP

εnΒω

- > The LSP pump has been installed/removed 5 times at different depth
- > ~23 month of operation, ~15 to 20 start ups
- > All installations have been carried out by the GEIE team.

Dismantling one and two due to lubrication problems

- > Failure mode
- > Shaft wedged in enclosing tube and broke
- > Caused by bad quality of lubricant (demineralized tap water)
- Problem solving
- > Re-engineer of water treatment plant

Dismantling due to hydraulic problems

> Failure mode

> Damage of impellers (all stages), bearings, centralizers and enclosing tube

EnBW

- > Caused by abrasion, corrosion, local cavitation?
- > Problem solving
- > Material selection, adapted operation conditions (to be proven!)

Design and operation improvements done for the restart in March 2012

- > Test of new bearing material (lub string): Bronze
- Increase the number of stages in order to decrease the rotation speed of the pump ⇒ avoid vibration problems
- > Replacement of damaged parts (hydraulic part, piping)
- Adjustment of shaft diameter ⇒ reduce sleeve diameter from 47,5 to 47mm
- Renew surface connection (shaft/motor coupling)

Տոթր

Lessons learned during LSP operation

> Research and improvements done on LSP at Soultz

- > Test of new materials for hydraulic part (Bronze)
- > Test of metal hardening (Boronization)
- > Improvement of some pieces of the hydraulic part
- > Improvement of pump installation procedure, development of new tools
- > Test of new internal bearing design
- > Improvement of water level measurement device

εnΒω

Key data ESP - located in well GPK4

> Design data:

- > ESP REDA Schlumberger ordered in June 2007
- > 339 kW, max. 40 l/s, min. 20 l/s, total ESP length of 20 meters
- Specific high temperature design for brine temperatures of 185 °C; Motor is cooled by hot geothermal brine why oil temperature can reach up to 260 °C
- > Noble materials due to specific working conditions
- Temperature monitoring along ESP

operation conditions:

- > Installed at 500 meter depth in GPK4
- ~ 25 l/s, ~170 °C and a TDH of 400 to 600 m

ՇոՑև

Working principle and general configuration of ESP

Operating time of ESP

Տոթր

- > The ESP was installed from November 2008 to December 2011
- > 10 month of operation, 12 start ups
- > Operation outside operating range, as GPK4 is no good producer
- > Tear down analysis is still in progress

Installation of ESP in November 2008

Temperature monitoring of ESP by fiber optic cable T = f (depth, time)

EnBW

Sampling (m)

Injection pumps

- Injection pumps were used in 2008, 2009 and beginning of 2010 to re-inject the brine into GPK3
- > Since 2010, trial of a new strategy without reinjection pump
- Today brine is re-injected in GPK3 (deep reservoir) and GPK1 (upper) reservoir) without pumps

⇒ System is working

⇒ Temperature decrease of ~7 °C due to new concept

EnBW

57 | 13.11.2012

Comparison ORC and Kalina

–Տոթր

ORC

Commercial available

Organic, pure fluid as working fluid

Isotherm evaporation and condensation

Higher exergetic loss

Less complex, no separators

Kalina

Currently only few power plants

Zeotropic mixture of Ammonia/water as working fluid

non.- isotherm evaporation and condensation

Better adaption of the cycle to the heat source

Separators necessary

Experience: operation is manageable

Engineering and design seems to be challeging

58 | 13.11.2012

Social Acceptance – Fears Research projekt: "PR für Tiefengeothermie" (BMU; enerchange; EIFER; Risikodialog St. Gallen; EnBW)

Odour nuisance NIMBY Finances Seismicity EnBW

> Financial damage at people's property

- > Loss of value through a power plant in the neighbourhood
- > Damages through the operation of a geothermal power plant (Basel)
- > Noise (mainly through the cooling towers)
- > Nuclear pollution natural nuclear particles in the brine
- > Not trustworthy investors in a local area
- > Economic feasibility and social compatibility

Outlook: Research in the field of deep geothermal energy

Environmental influences

Quelle: AGW am KIT

- > noise
- > Natural radioactivity
- > Optical influences
- > etc.

Power plant technology

EnBW

- > corrosion
- > scaling
- > Aqueous chemistry
- > Plant operation

> etc.

Servoir
Reservoir management
Seismicity
Hydraulic behaviour of ore holes

> etc.

Source: Eurostat (online data codes: tsdcc310 and nrg_100a)

Cross-border exchange 2020

–Տոթր

- > Challenges for future grid development
 - > 80 of 100 identified bottlenecks arise through RES
- The capacity will increase by 250 GW
 - > 220 GW will be RES,
- > Decommissioning of power plants
 - > 25 GW nuclear power (16 Germany, 7 UK)
 - > 9 GW coal-fired power plants in UK
 - Decommissioned power plants are close to highly populated regions (security of supply)
- > 51500 km new or refurbished power lines
 - > + 17 % additional power lines
 - > 104 billion € investment in the coming 10 years
 - > 80 % new lines/ 20 % refurbishment

The German transportation network

Overview on the control zones

– Տոցի

Kessler/Münch – 66 Elektrizitätswirtschaft

The electricity network network structure

– ᢄո᠑Ѡ

Market situation in a «lack-of-wind»-situation Feb. 2008 Load curve in the 50-Hertz High-Voltage electricity grid (approximated)

Տոթր

Fast restoring of power What did EnBW do?

–ՏոՅԽ

- Immediately after recognizing the frequency drop the network control centre in Wendlingen reacted through the energy-dispatch-centre in Karlsruhe
 - > Shutting of all the working pump storage facilities
 - Synchronization of all available and fast-startable power plants (pump-storagepower-plants; gas turbines)
- > The automatic, frequency controlled shut-down of pumps (water supply) reduced the burden on the network by 148 MW.
- > In the EnBW control-zone a power plant capacity of 1100 MW was started
- Through such additional started power plants in the UCTE-network it was possible to increase the frequency within the secondary regulation (15 min) to the desired level of 50 Hz
- > The reason for the frequency drop was a maintenance measure in the Amprion control zone, which wasn't done under the n+1-criteria

Smart grid – what is that ?

Injection pumps

- > Two pumps in noble material (uranus) delivered by EBARA
- > Max power 500 kW
- Flow rate between 60 to 120 m³/h and 35 to 80 bars (limitation by seismic issues)
- > Variable speed drive for regulation

Closer look at damage of April 2011

> Cause of stop:

> Destruction of the hydraulic part of the pump

> Loss of bowl N°1

> Destruction of all bearings inside the hydraulic part

- Destruction and cutting of the housings within hydraulic part until bowl N°5
- Damage caused by the combination of high rotation speed (2200 rpm) and abrasive particles inside the water
- > Analysis of damage was done by CETIM/CERMAT laboratory

Damage of pump housing (damage April 2011)

Damage of impellers and housing (damage April 2011)

 Damage due to collision of rotor and housing at the pump inlet (highest stress on stages)

Closer look at damage of October 2011

> Cause of stop:

Damage caused by high vibration, linked to high rotation speed and initial damage to the centralizer

EnBW

- Destruction of the centralizer
- Destruction of the lubrication string N°4
- > Destruction of the Teflon bearings
- > Destruction of the shaft bearings
- Destruction of the sealing surfaces of the impellers inside the pump (non boronized surface)
- Destruction of the centralizer due to local under load of the centralizer material (arsenic corrosion)
- > Analysis of damage was done by CETIM/CERMAT laboratory

Damage of centralizer, impeller and piping (damage October 2011)

– Տոցր

Installation of ESP in November 2008

EnΒW

Average Invest Costs of a Geothermal Project

EnBW

Allowances

– ՀոՑሠ

- > Mining law (concentrated in one authority)
 - > Authorization for the production of resources below the earth
 - > Main operation plan (central operation permission)
 - > Permission on basis of the water law to extract thermal water
- Construction permit
 - > Fire protection
- > Organisation of the operation
 - Responsibilities
 - Duties
 - > Skills

Seismic Monitoring

-Տոցր

