

Training Course on Geothermal Electricity

5 - 9 November 2012, Strasbourg, France

International Geothermal Market

C. Karytsas, D. Mendrinos

Geothermal resources

- Geothermal energy = the heat of the earth
- Geologic environment
 - Magmatic/volcanic
 - Thermal aquifers
 - Geopressured
 - Crustal heat

Geothermal resources	billion TOE	Fossil fuel reserves (end 2010)	billion TOE	
Crustal heat	10.775.600	Coal	422	
Magmatic/Volcanic	327.360	Oil	208	
Geopressured	55.924	Natural gas	168	
Aquifers, thermal	18			

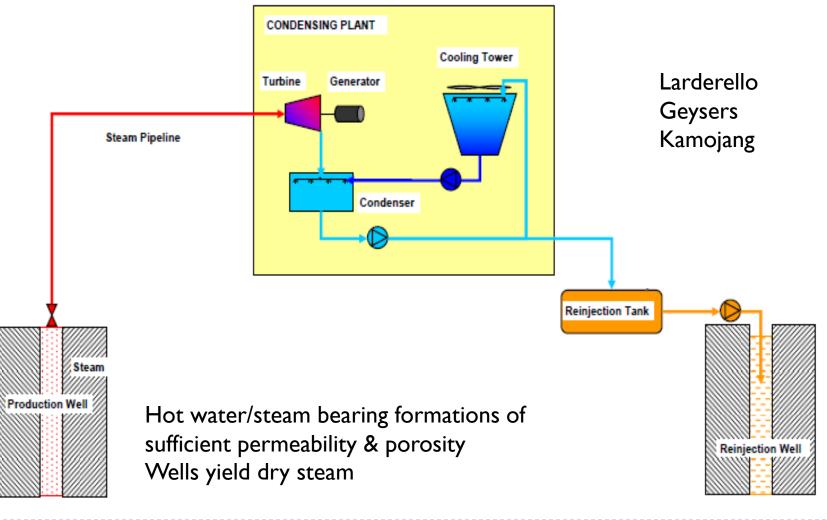
Exploitation technology: present

Hydrothermal systems

 Hot water/steam bearing formations of sufficient permeability & porosity

Plant technology

- \blacktriangleright Wells yield dry steam \Rightarrow Dry steam condensing plants
- Wells yield two phase fluid \Rightarrow Flash condensing plants
- Wells yield liquid water \Rightarrow Binary plants
- Combined cycle plants
- Depths 2-3 km



Exploitation technology: the future

- Enhanced geothermal systems (EGS)
 - Inadequate natural permeability to sustain commercial production rates
 - An artificial reservoir is engineered by hydraulic fracturing, acidizing, propellants, etc.
 - Surface water is circulated through the system as heat transfer media
 - Depths 3-5 km
 - The future is now: a handful of EGS plants are in operation around the globe
 - First EGS plant producing electricity in Soultz
- Supercritical fluids
 - >350°C from depths 5-10 km

Dry steam plants

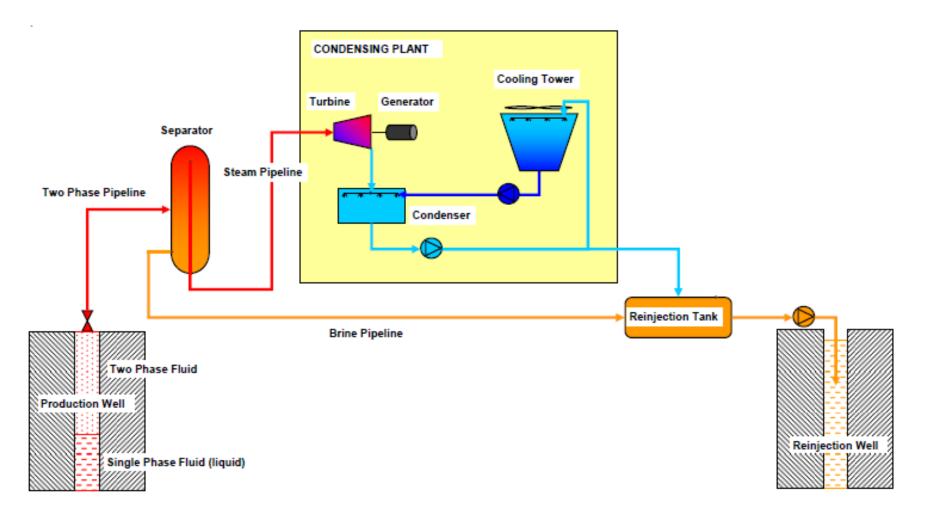
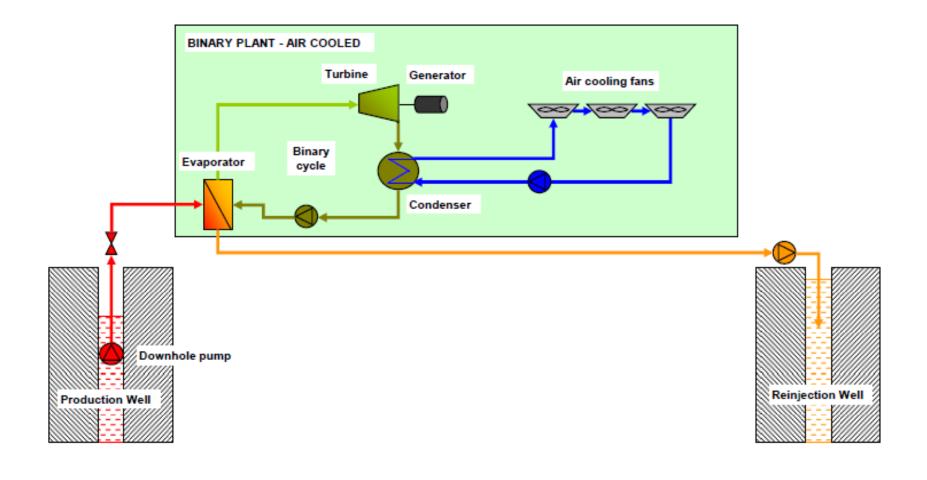

40MW Nuova San Martino plant, Larderello

Photo from Cappetti G., Romagnoli P. and Sabatelli F. (2010). Geothermal Power Generation in Italy 2005–2009 Update Report

Flash condensing plants

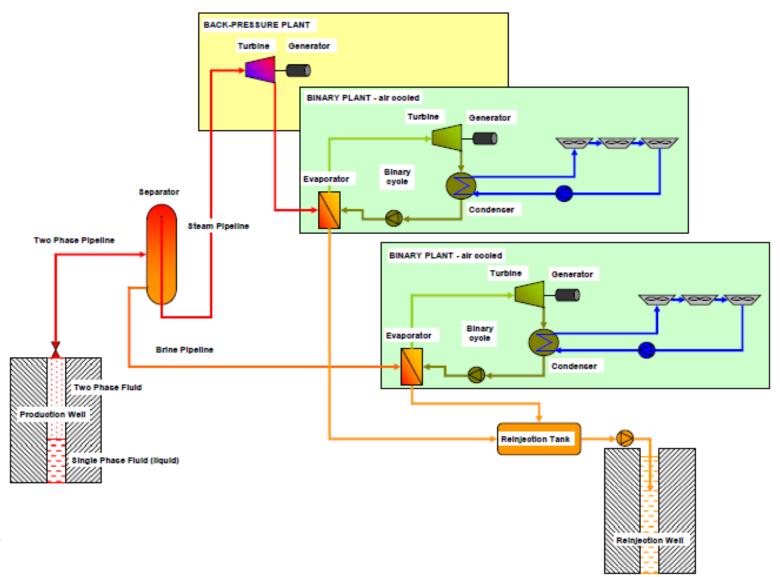
130 MWe Nga Awa Purua plant



15 MWe Buillante plant

Photo: Jaudin F (2006). Geothermal fields of Guadeloupe, Martinique and La Réunion

Binary plants

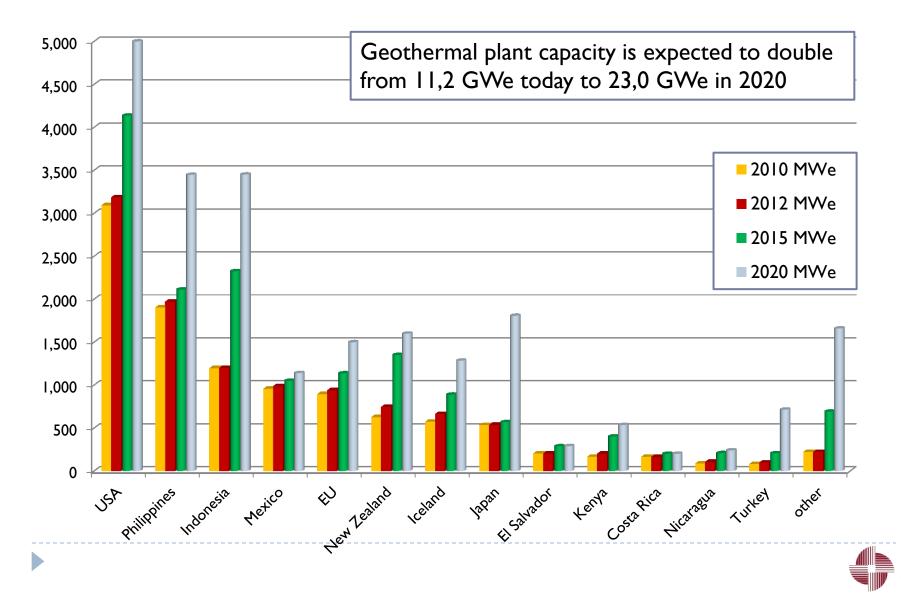


200 kW Simbach-Braunau unit

Combined cycle flash/binary plants

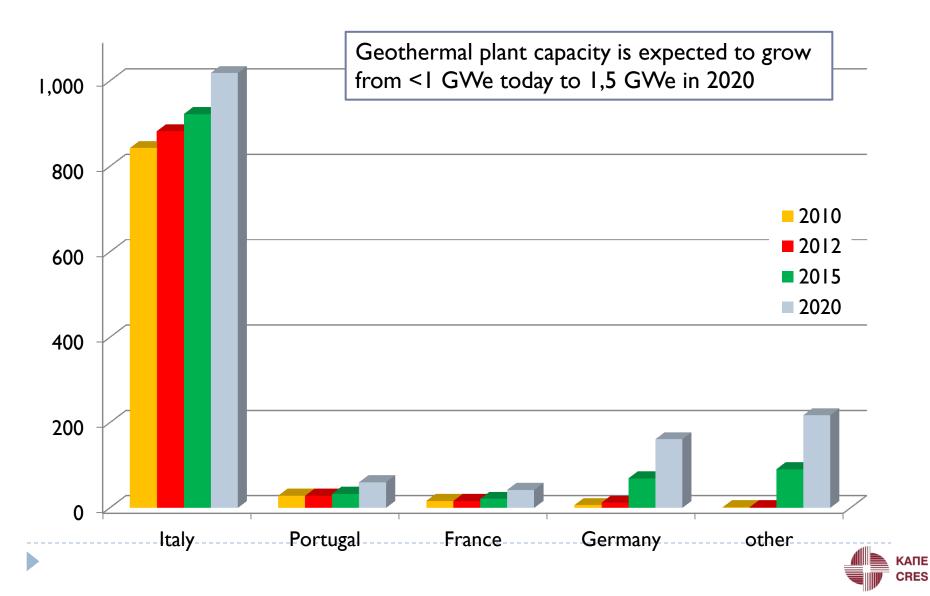
34 MWe Rotokawa plant

Photo: Mighty River Power & Tauhara North No 2 Trust Brochure

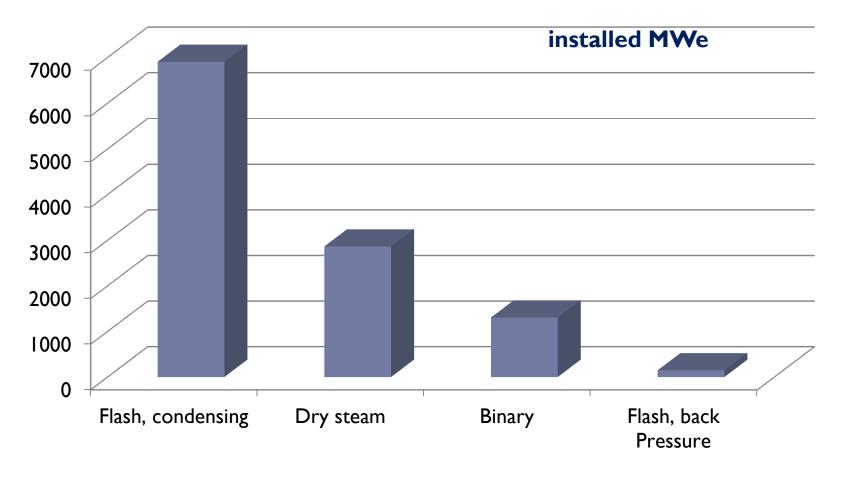


Location of geothermal power plants

- tectonic plates boundarieshydrothermal systems
- volcanic/magmatic environments



Installed capacity: world


KANE CRES

Installed capacity: EU

Plant types

D

Plant manufacturers

KAΠE CRES

Plant & Energy costs

D

recent projects	Inve	stment, €/M\	Energy production costs, €/kWh			
	Flash	Binary EGS		Flash	Binary	EGS
USA	2.700.000	3.100.000	6.200.000	0,055	0,060	0,100
Indonesia, New Zealand, Philippines	2.300.000			0,044		
Central America	1.900.000			0,042		
EU		4.500.000	11.600.000		0,090	0,200
Chile	3.600.000			0,072		
Germany		6.500.000			0,100	
Turkey	2.750.000			0,063		

Market size & growth

		2012	2012-2020			
	installed	annual s	ales	annual growth		
	capacity	electricity	value	capacity	investments	
	MWe	GWh	billion €	MWe	billion €	
World	11.242	70.500	7,05	I.450	3,75	
EU	941	6.150	I,20	65	0,43	

Market barriers

- Lengthy permitting procedures
- Lack of regulations
- High investment risk
- Access to finance
- Few companies with know how & competent personnel

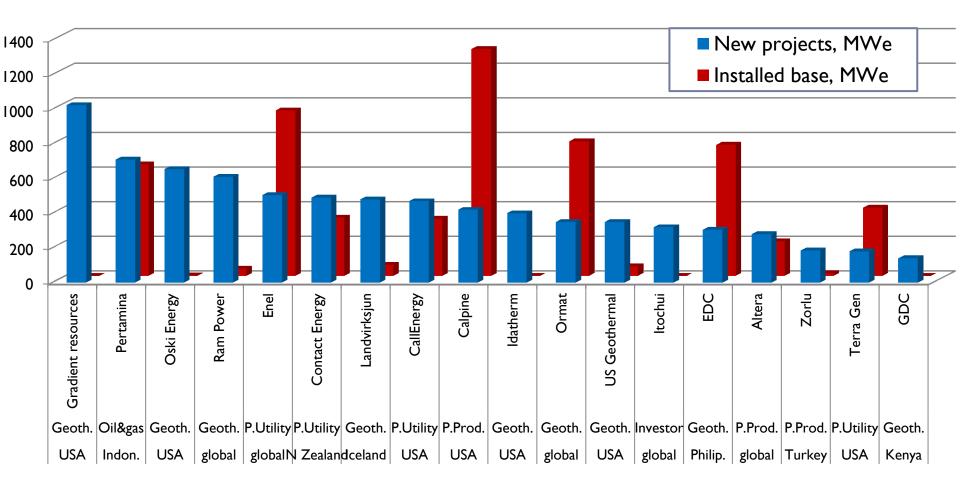
Incentives: USA

Jurisdictio n	Statute	Incentive Title	Tax	Туре	Taxpayer	yrs	Amount	Max	Expir e
Federal	§45	Renewable Electr. Prod.	Income	Credit	Producer	10	\$0.022/kWh	-	2013
	§48	Investment Energy Property	Income	Credit	Owner	5	10%	-	2016
	§168(e)3	Certain Energy Property	Income	Deduction	Owner	5	200% DB	-	2016
	§54C	New Clean RE Bonds	Income	Credit	Holder	-	0 interest	-	Limit
Alabama	§40-18-	Altern. Energy Prod. Faclt.	Income	Credit	Utility	20	5%	-	2015
	§40-9B-4	Altern. Energy Prod. Faclt.	Property	Abatement	Utility	-	100%		2018
Delaware	§2040	Clean Energy Mfg Jobs	Income	Credit	Manufacturer	-	\$750/J & \$100k	\$500k	-
Florida	196.175	RES Devices	Property	Exemption	Owner	10	100%	-	-
	220.193	Renewable Energy Prod.	Income	Credit	Producer	-	\$0.01/k₩h	\$1mio	2016
Maryland	§10-720	RE Production	Income	Credit	Producer	5	\$0.0085/kWh	\$2.5mio	2015
N. Jersey	§54:10A	Altern.Energy Tech. Co	Income	Credit	Investor	3	30%	\$500k	-
	§54:4-3.	RE Systems	Property	Exemption	Owner	-	100%		

Feed in tariffs (or equivalent)/premiums

country	€/kWh	country	€/kWh	country	€/kWh
Japan <15MW >15MW	0,4077 0,2692	Italy (feed-in premium)	0, I 300 0,0990	Belgium (Flanders) green certificates (min)	0,0900
Switzerland <5 MW >20MW	0,3330 0,1890	Slovenia - feed-in premium	0,1524 0,1036	Portugal: Azores only	0,0884
Germany EGS other	0,3000 0,2500	UK (2 ROCs per MWh)	0,1422	Austria	0,0750
France continental	0,2800 0,2000	Indonesia max min	0,1308 0,0833	Estonia (feed-in premium)	0,0537
France overseas	0,1600 0,1300	Greece	0,1220		
Slovakia	0,1905	Romania max-min (2 green cert. per MWh)	0,1100 0,0540		
Czech Rep. - feed-in premium	0,1810 0,1420	Hungary max min	0,1070 0,0390		

The trend is to replace feed-in tariffs with feed-in premiums



Incentives: developing countries

- Carbon tax credits
- World bank loans

Companies developing the market

67% of global capacity under development

thank you for your attention

