Geothermal power in the reality of the electricity market

Session VII: Plant operation, energy supply and grid integration

GEOELEC training course Potsdam 18. April 2013

Topic of the presentation: energy supply, electricity grid & plant operation department: Research & Innovation author: Sören Reith version: 130418

Energie braucht Impulse

Table of content

- 1. Energy supply
 - a. Regulation
 - **b**. Energy trade
 - **C.** Support Systems for RES in Europe
- 2. Electricity grid
 - **a.** General structure of the electricity grid
 - **b.** Power flows in Europe
 - C. Integration of renewable energies
 - d. Control of the European electricity grid

- 3. Plant operation
 - **a.** Demand for geothermal power

EnBW

b. Lessons learned

Brief portrait EnBW Energie Baden-Württemberg AG

> One of the largest energy companies in Germany and Europe

EnBW

En!Bu

- Business segments: electricity generation and trading, electricity grid and sales, gas, energy and environmental services
- > Annual revenue 2011: in excess of € 18 billion
- > Customers: some 5,5 million
- > employees: some 20,000
- Installed capacity: 13 042 MW thereof 2538 renewable
- 2 geothermal power plants

Geothermal power plant in Soultz-sous-Forêts, France Upper Rhine Valley

Source G.E.I.E, 2010

Geothermal power plant – Soultz-sous-Forêts

French-German consortium (federal agencies, research agencies; industry)

Thermal capacity	Power plant	boreholes
25-35 l/s Flow rate	ORC power plant	EGS-power plant
175 °C Flow temperature	~ 19 bar Pressure	4 Number of boreholes 3600 m / 5100 m / 5100 m / 5260 m Depth of GPK1/GPK2/GPK3/GPK4 Electric submersible pump/ lineshaft pump
70 °C Return flow temperature	lsobutan Working fluid	
~ 14 MW	Air cooling tower	
Thermal capacity	~ 2,1 MW Gross electrical output	

Geothermal power plant – Bruchsal

consortium between ewb & EnBW

boreholes Power plant Thermal water Hydrothermal 24 l/s Kalina power plant Flow rate ~ 22 bar 2 120 °C pressure Number of boreholes Flow temperature Water-ammonia - 1874 m/ - 2542 m 60 °C Working fluid Depth of GBI/GBII Return flow temperature Wet cooling tower **Flectric Submersible** ~ 5.5 MW pump Thermal capacity ~ 0.55 MW Gross electrical output

EnBW

7 | 18.04.2013

Table of contents

- 1. Energy supply
 - a. Regulation
 - **b.** Energy trade
 - C. Support Systems for RES in Europe
- 2. Electricity grid
 - **a.** General structure of the electricity grid
 - **D.** Power flows in Europe
 - C. Integration of renewable energies
 - d. Control of the European electricity grid

EnBW HOL TF I Sören Reith I GEOELEC training course Strasburg

- **3.** Plant operation
 - **a.** Demand for geothermal power

EnBW

b. Lessons learned

EnBW

> 96/92/EC – Liberalization of electricity and gas markets

Regulation in the European electricity business

- > Free Choice of electricity supplier
- > Unbundling of production; transport; distribution; sales/trade
- > Discrimination free grid access
- Network fees are regulated

Electricity trade in the liberalised market

Electricity trade in the liberalised market

Development of the electricity price - theoretical

- > Electricity prices develop through the equilibrium of
 - > Offered power plant capacity (Merit-Order)
 - Load demand
- > Amount offered, price and demand are influenced by different circumstances.
- > Typically there are hourly price equilibriums identified
- ightarrow This means 8760 different markets with different influencing factors
- > The last power plant sets the price

–Տոթր

Support Systems for renewable energy in Europe Directive 2009/28/EC

> Goals

12 I

- > Reduction of CO_2 emissions
- > Reduction of the dependence on fossil energies
- > Fulfilment of the individual goals from directive 2009/28/EC
- > Directive 2009/28/EC guaranties a priority feed-in for Renewables

	Feed-in tariffs	 Legal determined feed-in tariff Customers are charged for the extra costs 	
	Quota systems	 Legally determined quota for RES in the elec. production Projects are financed through energy price and certificate price 	
	Tender models	 Tendering for a fixed amount for renewable capacity Cheapest project is done 	
	Tax reduction	Tax reduction for renewable energyWidely used	
18.0	8.04.2013 EnBW HOL TF I Sören Reith I GEOELEC training course Strasburg		

Support Systems for renewable energy in Europe

EnBW

13 I 18.04.2013 EnBW HOL TF I Sören Reith I GEOELEC training course Strasburg

Table of contents

- 1. Energy supply
 - a. Regulation
 - **b.** Energy trade
 - C. Support Systems for RES in Europe
- 2. Electricity grid
 - **a.** General structure of the electricity grid
 - **b.** Power flows in Europe
 - C. Integration of renewable energies
 - d. Control of the European electricity grid

EnBW HOL TF I Sören Reith I GEOELEC training course Strasburg

- 3. Plant operation
 - **a.** Demand for geothermal power

EnBW

b. Lessons learned

The electricity network

Fundamentals of electricity distribution:

EnBW

 $P = U * I * \sqrt{3} * \cos \varphi$ $P_V = n * R' * d * I^2$

- Different losses occur through electricity transport
 - > Losses of the alternating current (AC)
 - > Losses of the overhead lines
 - > Losses of the wire
- Losses of the wire
 - Ohmic resistance
 - Limited heat resistance

Load distribution in the network

– ՀոՑሠ

Load and demand in Europe

Country analyses under normal & severe conditionS

Physical power flows between Germany and Switzerland 17.10.2012

Transport capacity – a more and more scare good Challenges for the network operation in Europe

Example: TenneT-control zone

- Currently there is a high burden through wind energy and trade flows from Scandinavia
- > 6.200 MW transport capacity/ 3.500 MW min. demand

Example:

- > Central Europe at the 22.12.04, 17:30 h, phys. Load flows
- > Wind feed-in: 11,461 MW
- > Export balance: ca. 6200 MW

Result:

- With a growing wind feed-in the electricity is pushed in the neighbouring countries
- Growing stress on the cross-border transfer capacity
- Overloading of the neighbouring networks

- Integration of new power plants
- Expansion of transport capacity with Scandinavia is demanded

EnBW

201 18.04.2013

EnBW HOL TF I Sören Reith I GEOELEC training course Strasburg

Wind energy feed-in in the TenneT-network, Aug. 2010 *prognosis and real feed-in*

EnBW

211 18.04.2013

EnBW HOL TF I Sören Reith I GEOELEC training course Strasburg

Market reaction strong wind situation 25./26.12.2009:

The ChallengeDifference between electricity demand and operatingwind capacity

Table of contents

- 1. Energy supply
 - a. Regulation
 - **b.** Energy trade
 - C. Support Systems for RES in Europe
- 2. Electricity grid
 - **a.** General structure of the electricity grid
 - **b.** Power flows in Europe
 - C. Integration of renewable energies
 - d. Control of the European electricity grid

- 3. Plant operation
 - **a.** Demand for geothermal power

EnBW

b. Lessons learned

EnBW HOL TF I Sören Reith I GEOELEC training course Strasburg

European directives and goals concerning renewable/geothermal energy sources

- European directive 2009/28/EC
 - > Article 2a: "energy from renewable sources' means energy from renewable non-fossil sources, namely wind, solar, aerothermal, geothermal, ... "
 - > Article 2c: "geothermal energy' means energy stored in the form of heat beneath the surface of solid earth;"

Capacity factors for electricity production Availability of power plants

EnBW

Bereich I Name I Datum I Dateiname

27 | 18.04.2013

Future demand for base load power

EnBW

28 I 18.04.2013 EnBW HOL TF I Sören Reith I GEOELEC training course Strasburg

Renewable heat production – the sleeping giant of climate protection

- > Ambitious goals for renewable heating in Europe
- > 10.2 % of German heat demand (heating; warm water) comes From RES (2011)

ยายิม

> In Germany around 90 % of a households energy demand is used for heating

Mineralisation of the brine (Bruchsal)

EnΒW

Scaling - Bruchsal

Source: ewb Bruchsal

31 I 18.04.2013 EnBW HOL TF I Sören Reith I GEOELEC training course Strasburg

Gases in the geothermal brine

EnΒW

33 I 18.04.2013 EnBW HOL TF I Sören Reith I GEOELEC training course Strasburg

Two Phase Flow: CO₂ and Aqueous Phase

- > Technical measures to prevent precipitations and low efficiency of heat exchange:
 - > Pressure maintenance
 - > Acidifying
 - > Application of inhibitors

Pumping technologies applied and tested in Soultz

Three different kind of pumps are used in the geothermal loop

Line Shaft Pump (LSP): the hydraulic pump is down-hole, the motor drive is at surface, connection being done through a line shaft
mechanical risk

- Electric Submersible Pump (ESP): both electrical motor and pump are downhole, the motor drive is fed by a MV cable
 - ➡ electrical risk
- Injection pumps : horizontal, multistage high pressure pump (surface equipment)

Key data LSP - located in well GPK2

> Design data:

- > Ordered in June 2006 (Manufacturer: IGE Ltd.)
- Initial shaft length of 350 m
- > Max. volume flow 40 l/s
- > Surface motor 350 HP, Variable Frequency Drive
- Lubrication by demineralized tap water
- > operation conditions:
- Initial productivity of GPK2 was 1 l/s/bar
- Productivity improved during operation time
- > The LSP is now installed at 270 m depth due to verticality issue
- ~ 25 l/s, ~170 °C and a TDH of 300 400 m

Working principle and general configuration of LSP

Shaft Lub string Exhaust pipe VHS motor Adaptor Discharge Stuffing box head Water level measurement 4 LH Column LN assembly LD Pump Suction L = Length of column assembly pipe Ly = Water level in reservoir L_u = Water level in well L_N = Draw down in well Strainer $L_{d} = Length of pump$ Teflon Centralizer Well casing

EnBW

bearing

37 I Ref: IGE Ldt.

Working principle and general configuration of LSP

riser, enclosing tube, shaft

Teflon bearings

hydraulic part, 17 stages

installation

38 I

motor/shaft coupling

view at well head/motor

Operating time and maintenance of LSP

EnBW

- > The LSP pump has been installed/removed 5 times at different depth
- >~23 month of operation, ~15 to 20 start ups
- > All installations have been carried out by the GEIE team.

39 I 18.04.2013 EnBW HOL TF I Sören Reith I GEOELEC training course Strasburg

Dismantling one and two due to lubrication problems

Failure mode

- Shaft wedged in enclosing tube and broke
- Caused by bad quality of lubricant (demineralized tap water)

Problem solving

> Re-engineer of water treatment plant

Dismantling due to hydraulic problems

Failure mode

> Damage of impellers (all stages), bearings, centralizers and enclosing tube

- > Caused by abrasion, corrosion, local cavitation?
- Problem solving
- > Material selection, adapted operation conditions (to be proven!)

Design and operation improvements done for the restart in March 2012

- > Test of new bearing material (lub string): Bronze
- Increase the number of stages in order to decrease the rotation speed of the pump \RPP avoid vibration problems
- Replacement of damaged parts (hydraulic part, piping)
- Adjustment of shaft diameter => reduce sleeve diameter from 47,5 to 47mm
- Renew surface connection (shaft/motor coupling)

EnBW

EnBW HOL TF I Sören Reith I GEOELEC training course Strasburg

Key data ESP - located in well GPK4

> Design data:

- > ESP REDA Schlumberger ordered in June 2007
- > 339 kW, max. 40 l/s, min. 20 l/s, total ESP length of 20 meters
- > Specific high temperature design for brine temperatures of 185 °C; Motor is cooled by hot geothermal brine why oil temperature can reach up to 260 °C
- > Noble materials due to specific working conditions
- > Temperature monitoring along ESP

operation conditions:

- > Installed at 500 meter depth in GPK4
- ~ 25 l/s, ~170 °C and a TDH of 400 to 600 m

Working principle and general configuration of ESP

EnΒW

Operating time of ESP

- > The ESP was installed from November 2008 to December 2011
- > 10 month of operation, 12 start ups
- > Operation outside operating range, as GPK4 is no good producer
- > Tear down analysis is still in progress

45 I 18.04.2013 EnBW HOL TF I Sören Reith I GEOELEC training course Strasburg

Injection pumps

- Injection pumps were used in 2008, 2009 and beginning of 2010 to re-inject the brine into GPK3
- Since 2010, trial of a new strategy without reinjection pump
- > Today brine is re-injected in GPK3 (deep reservoir) and GPK1 (upper reservoir) without pumps
 - ⇒ System is working
 - Temperature decrease of ~7 °C due to new concept

Comparison ORC and Kalina

– ՏոՅա

ORC

Commercial available

Organic, pure fluid as working fluid

lsotherm evaporation and condensation

Higher exergetic loss

Less complex, no separators

Kalina

Currently only few power plants

Zeotropic mixture of Ammonia/water as working fluid

non.- isotherm evaporation and condensation

Better adaption of the cycle to the heat source

Separators necessary

Experience: operation is manageable

Engineering and design seems to be challeging

47 | 18.04.2013

EnBW HOL TF I Sören Reith I GEOELEC training course Strasburg

Outlook: Research in the field of deep geothermal energy

Environmental influences

Quelle: AGW am KIT

- > noise
- > Natural radioactivity
- > Optical influences
- > etc.

48 | 18.04.2013

Power plant technology

EnBW

- corrosion
- scaling
- > Aqueous chemistry
- > Plant operation
- > etc.

Reservoir

- Reservoir management
- > seismicity
- Hydraulic behaviour of bore holes
- > etc.

